Learn More
Replicative capacity, which is the number of times an individual cell divides, is the measure of longevity in the yeast Saccharomyces cerevisiae. In this study, a process that involves signaling from the mitochondrion to the nucleus, called retrograde regulation, is shown to determine yeast longevity, and its induction resulted in postponed senescence.(More)
The yeast Saccharomyces cerevisiae has a finite life span that is measured by the number of daughter cells an individual produces. The 20 genes known to determine yeast life span appear to function in more than one pathway, implicating a variety of physiological processes in yeast longevity. Less attention has been focused on environmental effects on yeast(More)
Individual cells of the yeast Saccharomyces cerevisiae have a limited replicative life-span. The role of the genes RAS1 and RAS2 in yeast longevity was examined. Over-expression of RAS2 led to a 30% increase in the life-span on average and postponed the senescence-related increase in generation time seen during yeast aging. No life-span extension was(More)
LAG1 is a longevity gene, the first such gene to be identified and cloned from the yeast Saccharomyces cerevisiae. A close homolog of this gene, which we call LAC1, has been found in the yeast genome. We have cloned the human homolog of LAG1 with the ultimate goal of examining its possible function in human aging. In the process, we have also cloned a(More)
Lag1p and Lac1p are two highly homologous membrane proteins of the endoplasmic reticulum (ER). When both genes are deleted, cells cannot transport glycosylphosphatidylinositol (GPI)-anchored proteins from the ER to the Golgi at a normal rate. Here we show that microsomes or detergent extracts from lag1lac1 double mutants lack an activity transferring C26(More)
Age-synchronized populations of the binding yeast Saccharomyces cerevisiae were prepared by a combination of growth-synchronization methods and cell separation by rate-zonal sedimentation in density gradients. The procedure allowed the bulk preparation of cells of any desired age up to at least 20 generations with minimum yields of 10(8) cells per(More)
The replicative life span of Saccharomyces cerevisiae was previously shown to be modulated by the homologous signal transducers Ras1p and Ras2p in a reciprocal manner. We have used thermal stress as a life span modulator in order to uncover functional differences between the RAS genes that may contribute to their divergent effects on life span. Chronic(More)
The yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, or budding. In each cell division, the daughter cell is usually smaller and younger than the mother cell, as defined by the number of divisions it can potentially complete before it dies. Although individual yeast cells have a limited life span, this age asymmetry between mother and(More)
Caloric restriction has been demonstrated to extend life span and postpone aging in a variety of species. The recent extension of the caloric restriction paradigm to yeast places the emphasis of the search for the longevity effectors at the cellular level. To narrow the range of potential effectors of the caloric restriction response, we have examined the(More)
Studies of the yeast Saccharomyces cerevisiae reveal four processes determining life span: metabolism, stress resistance, chromatin-dependent gene regulation, and genome stability. The retrograde response, which signals mitochondrial dysfunction resulting in changes in nuclear gene expression, extends yeast life span and is induced during normal aging. This(More)