Learn More
Replicative capacity, which is the number of times an individual cell divides, is the measure of longevity in the yeast Saccharomyces cerevisiae. In this study, a process that involves signaling from the mitochondrion to the nucleus, called retrograde regulation, is shown to determine yeast longevity, and its induction resulted in postponed senescence.(More)
The yeast Saccharomyces cerevisiae has a finite life span that is measured by the number of daughter cells an individual produces. The 20 genes known to determine yeast life span appear to function in more than one pathway, implicating a variety of physiological processes in yeast longevity. Less attention has been focused on environmental effects on yeast(More)
Individual cells of the yeast Saccharomyces cerevisiae have a limited replicative life-span. The role of the genes RAS1 and RAS2 in yeast longevity was examined. Over-expression of RAS2 led to a 30% increase in the life-span on average and postponed the senescence-related increase in generation time seen during yeast aging. No life-span extension was(More)
LAG1 is a longevity gene, the first such gene to be identified and cloned from the yeast Saccharomyces cerevisiae. A close homolog of this gene, which we call LAC1, has been found in the yeast genome. We have cloned the human homolog of LAG1 with the ultimate goal of examining its possible function in human aging. In the process, we have also cloned a(More)
The replicative life span of Saccharomyces cerevisiae was previously shown to be modulated by the homologous signal transducers Ras1p and Ras2p in a reciprocal manner. We have used thermal stress as a life span modulator in order to uncover functional differences between the RAS genes that may contribute to their divergent effects on life span. Chronic(More)
The yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, or budding. In each cell division, the daughter cell is usually smaller and younger than the mother cell, as defined by the number of divisions it can potentially complete before it dies. Although individual yeast cells have a limited life span, this age asymmetry between mother and(More)
Caloric restriction has been demonstrated to extend life span and postpone aging in a variety of species. The recent extension of the caloric restriction paradigm to yeast places the emphasis of the search for the longevity effectors at the cellular level. To narrow the range of potential effectors of the caloric restriction response, we have examined the(More)
The yeast Saccharomyces cerevisiae has a limited life span that can be measured by the number of times individual cells divide. Several genetic manipulations have been shown to prolong the yeast life span. However, environmental effects that extend longevity have been largely ignored. We have found that mild, nonlethal heat stress extended yeast life span(More)
Studies of the yeast Saccharomyces cerevisiae reveal four processes determining life span: metabolism, stress resistance, chromatin-dependent gene regulation, and genome stability. The retrograde response, which signals mitochondrial dysfunction resulting in changes in nuclear gene expression, extends yeast life span and is induced during normal aging. This(More)
The yeast Saccharomyces cerevisiae has a finite replicative life span. Yeasts possess two prohibitins, Phb1p and Phb2p, in similarity to mammalian cells. These proteins are located in the inner mitochondrial membrane, where they are involved in the processing of newly-synthesized membrane proteins. We demonstrate that the elimination of one or both of the(More)