• Citations Per Year
Learn More
The small and synthetically easily accessible 7-diethylamino-4-thiocoumarinylmethyl photolabile protecting group has been validated for uncaging with blue light. It exhibits a significant action cross-section for uncaging in the 470-500 nm wavelength range and a low light absorption between 350 and 400 nm. These attractive features have been implemented in(More)
This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called(More)
This paper evaluates the 2-hydroxyazobenzene platform for tailoring proton concentration pulses and oscillations with monochromatic light. The easily prepared 2-hydroxyazobenzenes exhibit large absorptions in the near-UV range. Photoisomerization was investigated by UV/Vis absorption, (1)H NMR spectroscopy, and steady-state fluorescence emission. In the(More)
The small and synthetically easily accessible coumarinylmethyl backbone has been modified to generate a family of photolabile protecting groups with redshifted absorption. We relied on introducing electron-donating groups in the 7 position and electron-withdrawing groups in the 2-, and 2- and 3 positions. In particular, we showed that the(More)
A 2-hydroxyazobenzene platform has been evaluated to photorelease protons in aqueous solutions. Three different systems relying on molecular, supramolecular and polymeric strategies have been investigated in order to tune the water solubility and the thermodynamic and kinetic properties. This paper first reports on the syntheses and the physico chemical(More)
In this work, Fluorescent False Neurotransmitter 102 (FFN102), a synthesized analogue of biogenic neurotransmitters, was demonstrated to show both pH-dependent fluorescence and electroactivity. To study secretory behaviors at the single-vesicle level, FFN102 was employed as a new fluorescent/electroactive dual probe in a coupled technique (amperometry and(More)
  • 1