S-M Abdulnour-Nakhoul

Learn More
The aim of this study was to determine whether expressing aquaporin (AQP)-1 could affect transport of NH(3). Using ion-selective microelectrodes, the experiments were conducted on frog oocytes (cells characterized by low NH(3) permeability) expressing AQP1. In H(2)O-injected oocytes, exposure to NH(3)/NH (20 mM, pH 7.5) caused a sustained cell acidification(More)
The purpose of this study was to investigate the direct effect of NH(3)/NH on mouse epithelial Na(+) channels (mENaC) expressed in Xenopus oocytes. Two-electrode voltage-clamp and ion-selective microelectrodes were used to measure the Na(+) current, intracellular pH (pH(i)), and ion activities in oocytes expressing mENaC. In oocytes expressing mENaC,(More)
Alendronate, an aminobisphosphonate, produces as a side effect a topical (pill induced) esophagitis. To gain insight into this phenomenon, we assessed the effects of luminal alendronate on both esophageal epithelial structure and function. Sections of rabbit esophageal epithelium were exposed to luminal alendronate at neutral or acidic pH while mounted in(More)
The opossum esophagus, like that of humans, contains a network of submucosal glands with the capacity to secrete bicarbonate ions into the esophageal lumen. To evaluate the role of these glands in protecting the epithelial surface from acid insult, we measured the lumen-to-surface pH gradient in opossum esophagus at different luminal pH and compared it to(More)
Epidemiological studies indicate a relationship between alcohol consumption and esophageal epithelial disease. We therefore sought the contribution of the direct effects of ethanol on esophageal epithelial structure and (transport and barrier) function. Epithelium from the rabbit was mounted in Ussing chambers and exposed luminally for 1 h to 1-40% ethanol.(More)
We examined the mechanisms of cellular Na+ transport, both Cl- dependent and Cl- independent, in the mammalian esophageal epithelium. Rabbit esophageal epithelium was dissected from its muscular layers and mounted in a modified Ussing chamber for impalement with ion-selective microelectrodes. In bicarbonate Ringer, transepithelial potential difference was(More)
The recently cloned, non-erythrocyte Rh glycoproteins (Rhbg and Rhcg) are expressed in the intercalated cells of the renal collecting duct. The apical Rhcg and the basolateral Rhbg are likely involved in NH3 and/or NH4+ transport, yet the characteristics of this transport are not yet certain. In this study we investigated the mechanism of NH4+ transport by(More)
The effect of norepinephrine (NE) on mechanisms of cellular Na+ transport in the isolated, perfused proximal tubule of Ambystoma tigrinum was examined. Single-barreled voltage and ion-selective microelectrodes were used to determine basolateral (V1), luminal (V2), and transepithelial (V3) membrane potentials and intracellular Na+ activity (alpha Nai). In(More)
We examined H+ and HCO3- transport mechanisms that are involved in the regulation of intracellular pH of Schwann cells. Primary cultures of Schwann cells were prepared from the sciatic nerves of 1-3-day-old rats. pHi of single cells attached to cover slips was continuously monitored by measuring the absorbance spectra of the pH-sensitive dye(More)
We examined the effect of norepinephrine (NE) on intracellular pH (pHi) and activity of Na+ (aNai) in the isolated perfused kidney proximal tubule of Ambystoma, using single-barreled voltage and ion-selective microelectrodes. In control HCO-3 Ringer, addition of 10(-6) M NE to the bath reversibly depolarized the basolateral membrane potential (V1), the(More)