Learn More
Endothelial cells of the blood-brain barrier form complex tight junctions, which are more frequently associated with the protoplasmic (P-face) than with the exocytoplasmic (E-face) membrane leaflet. The association of tight junctional particles with either membrane leaflet is a result of the expression of various claudins, which are transmembrane(More)
The aim of the study was to characterize the interendothelial junctions in tumor microvessels of five cases of human glioblastoma multiforme. In addition to morphological analysis, tumors were screened for the expression of junctional proteins, such as occludin, claudin-1, ZO-1 and catenins. The expression of the tight junction protein claudin-1 was lost in(More)
The choroid plexus epithelium forms the blood-cerebrospinal fluid (CSF) barrier and is responsible for the secretion of the CSF from the blood. The morphological correlate of the blood-CSF barrier are the tight junctions of choroid plexus epithelium. By freeze-fracture electron microscopy it has been demonstrated that choroid plexus epithelial tight(More)
The development of the blood-brain barrier depends upon the formation of a closely regulated system of adherens and tight junctions. A prerequisite for a functional junction system is the linkage of transmembrane adhesion receptors (cadherins) to the cytoskeleton via catenins. The localization of specific catenins at the adherens junction correlates with(More)
The factors responsible for the induction and maintenance of blood-brain barrier properties are still undefined. The process of blood-brain barrier formation is thought to take place in a two-stage manner: the initial commitment of vascular sprouts by neuroectodermal cells may be followed by the stabilization of barrier properties. In the present study, we(More)
The mechanisms leading to stroke in stroke-prone spontaneously hypertensive rats (SHRSP) are not well understood. We tested the hypothesis that the endothelial tight junctions of the blood-brain barrier are altered in SHRSP prior to stroke. We investigated tight junctions in 13-week-old SHRSP, spontaneously hypertensive stroke-resistant rats (SHR) and(More)
The pecten oculi is a convolute of blood vessels in the vitreous body of the avian eye. This structure is well known for more than a century, but its functions are still a matter of controversies. One of these functions must be the formation of a blood-retina barrier because there is no diffusion barrier for blood-borne compounds available between the(More)
Claudins are components of the tight junctional complex in epithelial and endothelial cells. We characterized the composition of tight junctions in the choroid plexus of the lateral ventricle in the rat brain and tested whether protein kinase C induced changes in their composition. Claudin-1, -2 and -5 were present in the epithelial cells at and near the(More)
The EphB/ephrinB receptor-ligand system is pivotal for the development of the embryonic vasculature and for angiogenesis in the adult organism. We observed that (i) the expression of ephrinB2 and ephrinB1 is up-regulated in capillaries during inflammation, that (ii) these ligands are localised on the luminal endothelial surface, and that (iii) they interact(More)
The pecten oculi of White Leghorn chicken was investigated in terms of possible blood-brain barrier properties by means of light and electron microscopy. The morphology, histochemistry and immunocytochemistry of this intraocular blood vessel convolute was examined. The permeability of the blood vessel for the electron-dense tracer lanthanum-nitrate was also(More)