Learn More
The precision of projections from dorsal thalamus to neocortex are key toward understanding overall cortical organization and function. To identify the significance of layer 4 cells in receiving the bulk of thalamic projections in somatosensory cortex, we disrupted layer 4 genesis and studied the effect on thalamic terminations in ferrets. Second, we(More)
Early generated layers of neocortex are important factors in forming the subsequent architecture of the cerebral cortex. To further explore the role of early generated cortex, we disrupted formation of an early generated cohort of cells by intraperitoneal injections of the mitotic inhibitor methylazoxymethanol (MAM) into pregnant ferrets timed to coincide(More)
The developing neocortex influences the growth of thalamocortical projections. Layer 4 in particular receives the majority of input from the thalamus and is important in instructing thalamic afferents to terminate. Previous in vivo experiments demonstrated that disruption of layer 4 during corticogenesis in ferret somatosensory cortex by application of(More)
Ferrets have become recognized as a useful and interesting model for study of neocortical development. Because of their immaturity at birth, it is possible to study very early events in the ontogeny of the brain. We used living slices of ferret somatosensory cortex to study the formation and development of intrinsic elements within the neocortex. A small(More)
We established a model of cortical development that arrests the birth of layer 4 cells by injecting methylazoxymethanol (MAM) on embryonic day 33 (E33) in ferrets. This leads to adult somatosensory cortex with a very thin layer 4. Earlier, we determined the relative absence of layer 4 changed the growth and differentiation of the somatosensory cortex and(More)
  • 1