Learn More
A timescale is necessary for estimating rates of molecular and morphological change in organisms and for interpreting patterns of macroevolution and biogeography. Traditionally, these times have been obtained from the fossil record, where the earliest representatives of two lineages establish a minimum time of divergence of these lineages. The clock-like(More)
A statistical method was developed for reconstructing the nucleotide or amino acid sequences of extinct ancestors, given the phylogeny and sequences of the extant species. A model of nucleotide or amino acid substitution was employed to analyze data of the present-day sequences, and maximum likelihood estimates of parameters such as branch lengths were used(More)
In the past, molecular clocks have been used to estimate divergence times among animal phyla, but those time estimates have varied widely (1200-670 million years ago, Ma). In order to obtain time estimates that are more robust, we have analysed a larger number of genes for divergences among three well-represented animal phyla, and among plants, animals and(More)
Production of interleukin-1 and tumour necrosis factor from stimulated human monocytes is inhibited by a new series of pyridinyl-imidazole compounds. Using radiolabelled and radio-photoaffinity-labelled chemical probes, the target of these compounds was identified as a pair of closely related mitogen-activated protein kinase homologues, termed CSBPs.(More)
In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell(More)
Adaptive evolution at the molecular level can be studied by detecting convergent and parallel evolution at the amino acid sequence level. For a set of homologous protein sequences, the ancestral amino acids at all interior nodes of the phylogenetic tree of the proteins can be statistically inferred. The amino acid sites that have experienced convergent or(More)
Positive Darwinian selection at the molecular level is often studied by comparing the number of synonymous nucleotide substitutions per synonymous site (d,) and the number of nonsynonymous substitutions per nonsynonymous site (dN) between homologous gene sequences , and a t-test with an infinite number of degrees of freedom is usually used for determining(More)
By subtraction cloning we previously identified a set of mouse genes (named Nedd1 through Nedd10) with developmentally down-regulated expression in brain. We now show that one such gene, Nedd2, encodes a protein similar to the mammalian interleukin-1 beta-converting enzyme (ICE) and the product of the Caenorhabditis elegans cell death gene ced-3 (CED-3).(More)
The classical hypothesis for the diversification of birds and mammals proposes that most of the orders diverged rapidly in adaptive radiations after the Cretaceous/Tertiary (K/T) extinction event 65 million years ago. Evidence is provided by the near-absence of fossils representing modern orders before the K/T boundary. However, fossil-based estimates of(More)
The mouse Nedd5 gene encodes a 41.5-kD GTPase similar to the Saccharomyces and Drosophila septins essential for cytokinesis. Nedd5 accumulates near the contractile ring from anaphase through telophase, and finally condenses into the midbody. Microinjection of anti-Nedd5 antibody interferes with cytokinesis, giving rise to binucleated cells. In interphase(More)