Learn More
Migration of dendritic cells (DCs) to the draining lymph node (DLN) is required for the activation of naive T cells. We show here that migration of DCs from the lung to the DLN after Mycobacterium tuberculosis (Mtb) exposure is defective in mice lacking interleukin (IL)-12p40. This defect compromises the ability of IL-12p40-deficient DCs to activate naive T(More)
Host defense against opportunistic fungi requires coordination between innate and adaptive immunity for resolution of infection. Antibodies generated in mice vaccinated with the fungus Pneumocystis prevent growth of Pneumocystis organisms within the lungs, but the mechanisms whereby antibodies enhance antifungal host defense are poorly defined. Nearly all(More)
The control of Mycobacterium tuberculosis (Mtb) infection begins with the recognition of mycobacterial structural components by toll like receptors (TLRs) and other pattern recognition receptors. Our objective was to determine the influence of TLRs polymorphisms in the susceptibility to develop tuberculosis (TB) in Amerindian individuals from a rural area(More)
Ectopic or tertiary lymphoid tissues, such as inducible bronchus-associated lymphoid tissue (iBALT), form in non-lymphoid organs after local infection or inflammation. However, the initial events that promote this process remain enigmatic. Here we show that iBALT formed in murine lungs as a consequence of pulmonary inflammation during the neonatal period.(More)
Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17(More)
Tuberculosis (TB) is caused by the intracellular bacteria Mycobacterium tuberculosis, and kills more than 1.5 million people every year worldwide. Immunity to TB is associated with the accumulation of IFNγ-producing T helper cell type 1 (Th1) in the lungs, activation of M.tuberculosis-infected macrophages and control of bacterial growth. However, very(More)
The variable efficacy of tuberculosis (TB) vaccines and the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) emphasize the urgency for not only generating new and more effective vaccines against TB but also understanding the underlying mechanisms that mediate vaccine-induced protection. We demonstrate that mucosal adjuvants, such as(More)
Nitric oxide (NO) is a ubiquitous mediator of inflammation and immunity, involved in the pathogenesis and control of infectious diseases, autoimmunity, and cancer. We observed that the expression of nitric oxide synthase-2 (NOS2/iNOS) positively correlates with Th17 responses in patients with ovarian cancer (OvCa). Although high concentrations of exogenous(More)
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), infects one third of the world's population. Among these infections, clinical isolates belonging to the W-Beijing appear to be emerging, representing about 50% of Mtb isolates in East Asia, and about 13% of all Mtb isolates worldwide. In animal models, infection with W-Beijing(More)
Tuberculosis (TB) is a global pandaemic, partially due to the failure of vaccination approaches. Novel anti-TB vaccines are therefore urgently required. Here we show that aerosol immunization of macaques with the Mtb mutant in SigH (MtbΔsigH) results in significant recruitment of inducible bronchus-associated lymphoid tissue (iBALT) as well as CD4(+) and(More)