S K Gibson

Learn More
Reduced effector activity and binding of arrestin are widely accepted consequences of GPCR phosphorylation. However, the effect of receptor multiphosphorylation on G protein activation and arrestin binding parameters has not previously been quantitatively examined. We have found receptor phosphorylation to alter both G protein and arrestin binding constants(More)
The equilibria between metarhodopsins I and II (MI and MII) and the binding of MII to retinal G protein (G) were investigated, using the dual wavelength absorbance response of rod disk membrane (RDM) suspensions to a series of small bleaches, together with a nonlinear least-squares fitting procedure that decouples the two reactions. This method has been(More)
Deactivation of many G protein coupled receptors (GPCRs) is now known to require phosphorylation of the activated receptor. The first such GPCR so analyzed was rhodopsin, which upon light activation forms an intramolecular equilibrium between the two conformers, metarhodopsin I and II (MI and MII). In this study, we find surprisingly that rhodopsin(More)
Stoichiometric exchange of GTP for GDP on heterotrimeric G protein alpha (Galpha) subunits is essential to most hormone and neurotransmitter initiated signal transduction. Galphas are stably activated in a Mg2+ complex with GTPgammaS, a nonhydrolyzable GTP analogue that is reported to bind Galpha, with very high affinity. Yet, it is common to find that(More)
Phosphorylation reduces the lifetime and activity of activated G protein-coupled receptors, yet paradoxically shifts the metarhodopsin I-II (MI-MII) equilibrium (K(eq)) of light-activated rhodopsin toward MII, the conformation that activates G protein. In this report, we show that phosphorylation increases the apparent pK for MII formation in proportion to(More)
  • 1