S. K. Chimakurthi

Learn More
Flexible flapping wings have garnered a large amount of attention within the micro aerial vehicle (MAV) community: a critical component of MAV flight is the coupling of aerodynamics and structural dynamics. This paper presents a computational framework for simulating shell-like wing structures flapping in incompressible flow at low Reynolds numbers in both(More)
Due to their small size and flight regime, coupling of aerodynamics, structural dynamics, and flight dynamics is critical for Micro Aerial Vehicles. This paper presents a computational framework for simulating structural models of varied fidelity and a Navier-Stokes solver, aimed at simulating flapping and flexible wings. The structural model utilizes(More)
Motivated by micro air vehicle applications, a fluid-structure coupling procedure between a NavierStokes solver and a three-dimensional FEM beam solver is presented along with selected results highlighting some of the aerodynamics implications. The fluid model includes laminar, the k ε − turbulence closure, and a filter-based k ε − closure. The structural(More)
Flexible flapping wings have garnered a large amount of attention within the micro aerial vehicle community: a critical component of computationalmicro aerial vehicle simulations is the representation of the structural dynamics behavior of the flapping-wing structure. This paper discusses the development of a new nonlinear finite element solver that is(More)
A high-order (up to 6th order) Navier-Stokes solver is coupled with a structural solver that decomposes the equations of three-dimensional elasticity into cross-sectional, smalldeformation and spanwise, large-deformation analyses for slender wings. The resulting high-fidelity aeroelastic solver is applied to the investigation of both a rigid and moderately(More)
  • 1