S. Jordan Kerns

Learn More
The synergy between structure and dynamics is essential to the function of biological macromolecules. Thermally driven dynamics on different timescales have been experimentally observed or simulated, and a direct link between micro- to milli-second domain motions and enzymatic function has been established. However, very little is understood about the(More)
The mammalian gut is a dynamic community of symbiotic microbes that interact with the host to impact health, disease, and metabolism. We constructed engineered bacteria that survive in the mammalian gut and sense, remember, and report on their experiences. Based on previous genetic memory systems, we constructed a two-part system with a "trigger element" in(More)
Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8,000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the(More)
Bacteria can be engineered to function as diagnostics or therapeutics in the mammalian gut but commercial translation of technologies to accomplish this has been hindered by the susceptibility of synthetic genetic circuits to mutation and unpredictable function during extended gut colonization. Here, we report stable, engineered bacterial strains that(More)
A number of alanine and more conservative mutants of residues in the fourth domain of thrombomodulin (TM) were prepared and assayed for protein C activation and for thrombin binding. Several of the alanine mutations appeared to cause misfolding or structural defects as assessed by poor expression and/or NMR HSQC experiments, while more conservative(More)
One sentence summary: Engineered bacteria record an inflammatory response in an IBD mouse model and are genetically stable during long-term growth in the mouse gut. Abstract: Inflammation in the gut, caused by infection and autoimmunity, remains challenging to effectively detect, monitor, and treat. Here, we engineer a commensal mouse E. coli strain to(More)
  • 1