S. J. Byrne

Learn More
Recent advances and progress in nanobiotechnology have demonstrated many nanoparticles (NPs) as potential and novel drug delivery vehicles, therapeutic agents, and contrast agents and luminescent biological labels for bioimaging. The emergence of new biomedical applications based on NPs signifies the need to understand, compare, and manage their(More)
BACKGROUND The unique and tuneable photonic properties of Quantum Dots (QDs) have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs(More)
BACKGROUND The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12)(More)
BACKGROUND The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report(More)
Förster resonance energy transfer ͑FRET͒ between CdTe quantum dots ͑QDs͒ at nanoscale proximity to gold nanoparticle ͑Au NP͒ layers is investigated experimentally. We have observed the enhancement in the acceptor QDs' photoluminescence lifetime intensities. The decrease in donor QDs' exciton lifetime from 5.74 to 2.06 ns, accompanied by an increase in(More)
The effects of surface plasmons (SPs) on Förster resonant energy transfer (FRET) in colloidal quantum dot (QD) structures have been investigated. CdTe QDs of two different sizes acted as donors and acceptors in a mixed donor-acceptor monolayer on top of a gold nanoparticle layer and an acceptor-gold-donor sandwich structure. The structures were(More)
The impact of intra-ensemble Förster resonant energy transfer (FRET) on the optical properties of monodispersed quantum dot (QD) monolayers and a donor/acceptor FRET bilayer structure are presented. The QD structures are characterized by steady-state absorption and photoluminescence (PL) spectroscopy as well as time-resolved PL measurements. The(More)
Colloidal CdTe quantum dots (QDs) with oppositely charged ligand shells were used to form quantum dot nanoclusters in solution. The signatures of Forster non-radiative energy transfer in the photoluminescence and time-resolved photoluminescence data indicates that the electrostatic attraction draws the QDs into close proximity forming nanoclusters. The(More)
  • 1