Learn More
The goal of this work is to quantitatively examine the effect of adhesive resin cement on the probability of crack initiation from the internal surface of ceramic dental restorations. The possible crack bridging mechanism and residual stress effect of the resin cement on the ceramic surface are examined. Based on the fracture-mechanics-based failure(More)
Phenomena of wave transmission through a multidirectional composite laminate immersed in a fluid have been investigated. Based on a recently-developed recursive stiffness matrix method time-domain beam models have been developed to simulate the problem. Experimental and theoretical results at frequency 2.25 MHz show that the transmission amplitude is highly(More)
The numerical instability problem in the standard transfer matrix method has been resolved by introducing the layer stiffness matrix and using an efficient recursive algorithm to calculate the global stiffness matrix for an arbitrary anisotropic layered structure. For general anisotropy the computational algorithm is formulated in matrix form. In the plane(More)
This study was structured to challenge the hypothesis that nano-sized particulates could be molecularly targeted and bound to the prognostic and predictive HER-2/neu cell membrane receptor to elicit detectable changes in ultrasound response from human breast cancer cells. SKBR-3 human breast cancer cells were enlisted to test the efficacy of the particle(More)
Boundary conditions for an interface between two solids are introduced to model a thin orthotropic interface layer. The plane of symmetry of the layer material coincides with the incidence plane. Boundary conditions relating stresses and displacements on both sides of the interface are obtained from an asymptotic representation of the three-dimensional(More)
An ultrasonic backscattering model is developed for textured polycrystalline materials with orthotropic or trigonal grains of ellipsoidal shape. The model allows us to simulate realistic microstructures and orthotropic macroscopic material textures resulting from thermomechanical processing for a broad variety of material symmetries. The 3-D texture is(More)
An efficient recursive algorithm, the stiffness matrix method, has been developed for wave propagation in multilayered generally anisotropic media. This algorithm has the computational efficiency and simplicity of the standard transfer matrix method and is unconditionally computationally stable for high frequency and layer thickness. In this algorithm, the(More)
A general model for determination of the complete set of acoustical and geometrical properties of an isotropic layer embedded between isotropic or anisotropic multilayered solids is developed. These properties include density, longitudinal and shear elastic moduli, layer thickness, and loss factors, simultaneously determined from two measurements, one at(More)
An analytical solution for a three dimensional integral representation of the backscattering (BS) coefficient in polycrystals with elongated (generally ellipsoidal) grains is obtained; it is a natural generalization of the known explicit result for the BS coefficient in polycrystals with spherical grains. New insights into the dependence of the BS signal on(More)
This paper presents an efficient and stable recursive compliance matrix method for analyzing wave propagation in multilayered piezoelectric media. The effective permittivity and generalized Green's functions for a layered system, a layered system on a substrate, and a layered system between two substrates have been obtained from the elements of the total or(More)