Learn More
This Letter presents the discovery of macroscale electron temperature fluctuations with a long radial correlation length comparable to the plasma minor radius in a toroidal plasma. Their spatiotemporal structure is characterized by a low frequency of ∼1-3  kHz, ballistic radial propagation, a poloidal or toroidal mode number of m/n=1/1 (or 2/1), and an(More)
In this Letter, we report analyses of spatiotemporal dynamics of turbulence and structure in the limit-cycle oscillation (LCO) that precedes an L-to-H transition. Zonal flows are not observed during LCO, and the oscillation is the periodic generations or decays of barrier with edge-localized mean flow. Oscillatory Reynolds stress is found to be too small to(More)
This Letter presents experimental confirmation of the presence of zonal flows in magnetically confined toroidal plasma using an advanced diagnostic system--dual heavy ion beam probes. The simultaneous observation of an electric field at two distant toroidal locations (approximately 1.5 m apart) in the high temperature (approximately 1 keV) plasma provides a(More)
A zonal magnetic field is found in a toroidal plasma. The magnetic field has a symmetric bandlike structure, which is uniform in the toroidal and poloidal directions and varies radially with a finite wavelength of mesoscale, which is analogous to zonal flows. A time-dependent bicoherence analysis reveals that the magnetic field should be generated by the(More)
Multipoint detection is an essential requirement for investigating plasma turbulence which is a highly nonlinear phenomenon in space and time. We have fabricated an array of 64-channel poloidal probes surrounding the linear cylindrical plasma named LMD-U in order to study turbulence properties, particularly the nonlinear mode couplings, in the domain of(More)
This article proposes a new method to evaluate basic characteristics of the dynamics of a coherent plasma structure (blob). With this method, one can evaluate the propagation angle of a blob in a two-dimensional plasma cross section as well as the blob velocity, size, and amplitude from one-dimensional data. The method is applied to blob measurements from(More)
The synchronization of geodesic acoustic modes (GAMs) and magnetic fluctuations is identified in the edge plasmas of the HL-2A tokamak. Mesoscale electric fluctuations (MSEFs) having components of a dominant GAM, and m/n=6/2 potential fluctuations are found at the same frequency as that of the magnetic fluctuations of m/n=6/2 (m and n are poloidal and(More)
A streamer, which is a bunching of drift-wave fluctuations, and its mediator, which generates the streamer by coupling with other fluctuations, have been observed in a cylindrical magnetized plasma. Their radial structures were investigated in detail by using the biphase analysis. Their quasi-two-dimensional structures were revealed to be equivalent with a(More)
The dynamic features of the low-intermediate-high-(L-I-H) confinement transitions on HL-2A tokamak are presented. Here we report the discovery of two types of limit cycles (dubbed type-Y and type-J), which show opposite temporal ordering between the radial electric field and turbulence intensity. In type-Y, which appears first after an L-I transition, the(More)
A calculation which describes the spin-up of toroidal plasmas by the radial propagation of turbulence fronts with broken parallel symmetry is presented. The associated flux of parallel momentum is calculated by using a two-scale direct-interaction approximation in the weak turbulence limit. We show that fluctuation momentum spreads faster than mean flow(More)