S El Ouezzani

Learn More
The jerboa is a semi-desert rodent, in which reproductive activity depends on the seasons, being sexually active in the spring-summer. The present study aimed to determine whether the expression of two RF-amide peptides recently described to regulate gonadotrophin-releasing hormone neurone activity, kisspeptin (Kp) and RF-amide-related peptide (RFRP)-3,(More)
Using in situ hybridization, the mRNA levels encoding neuropeptide Y (NPY) was investigated in the arcuate nucleus (ARC) of jerboas under three different states of energy balance. (1) normally feeding animals, (2) hibernating animals and finally (3) animals food deprived for 5 days. The hibernating and food deprived jerboas exhibited a significant increase(More)
The jerboa (Jaculus orientalis) has been described in the past as a hibernator, but no reliable data exist on the daily and seasonal rhythmicity of body temperature (T (b)). In this study, T (b) patterns were determined in different groups of jerboas (isolated males and females, castrated males and grouped animals) maintained in captivity during autumn and(More)
The distribution of cells expressing gonadotropin-releasing hormone (GnRH) immunoreactivity was examined in the brain of adult jerboa during two distinct periods of the reproductive cycle. During spring-summer, when the jerboa is sexually active, a high density of cell bodies and fibres immunoreactive (IR) for GnRH was observed at the level of separation of(More)
The hypothalamic response to an environmental stress implicates the corticotrophin-releasing hormone (CRH) neuroendocrine system of the hypothalamic parvicellular paraventricular nucleus (PVN) in addition to other neuropeptides coexpressed within CRH neurones and controlling the hypothalamo-pituitary-adrenal (HPA) axis activity as well. Such neuropeptides(More)
The corticotropin-releasing hormone (CRH) neurons of the hypothalamic parvocellular paraventricular nucleus (PVN) have a high potential for phenotypical plasticity, allowing them to rapidly modify their neuroendocrine output, depending upon the type of stressors. Indeed, these neurons coexpress other neuropeptides, such as cholecystokinin (CCK), vasopressin(More)
The neuroendocrine protein secretogranin II is the precursor of several neuropeptides, including secretoneurin and a novel 66-amino acid peptide, EM66, the sequence of which has been highly conserved across the vertebrae phylum. The presence of EM66 has been detected in the adult and fetal human adrenal gland, as well as the rat pituitary and adrenal(More)
  • 1