S. E. Tyaginov

Learn More
We propose and verify a model for hot carrier degradation based on the exhaustive evaluation of the energy distribution function for charge carriers in the channel by means of a full-band Monte-Carlo device simulator. This approach allows us to capture the interplay between “hot” and “colder” electrons and their contribution to(More)
Our physics-based HCD model has been validated using scaled CMOS transistors in our previous work. In this work we apply this model for the first time to a high-voltage nLDMOS device. For the calculation of the degrading behaviour the Boltzmann transport equation solver ViennaSHE is used which also requires high quality adaptive meshing. We discuss the(More)
We discuss and analyze the main features of hot-carrier degradation (HCD) which are a strong localization at the drain-side of the device, the interplay between single- and multiple-particle processes of Si-H bond dissociation, the transition of the worst-case scenario when going from long- to short-channel devices, and its temperature dependence. These(More)
We analyze the impact of oxide thickness variations on hot-carrier degradation. For this purpose, we develop an analytical approximation of our hot-carrier degradation (HCD) model. As this approximation is derived from a physics-based model of HCD, it considers all the essential features of this detrimental phenomenon. Among them are the interplay between(More)
Using our physics-based model for hot-carrier degradation (HCD) we analyze the role of such important processes as the Si-H bond-breakage induced by a solitary hot carrier, bond dissociation triggered by the miltivibrational excitation of the bond, and electron-electron scattering. To check the roles of these mechanisms we use planar CMOS devices with gate(More)
Using a physics-based model for hot-carrier degradation we analyze the worst-case conditions for long-channel transistors of two types: a relatively low voltage n-MOSFET and a high-voltage p-LDMOS. The key issue in the hot-carrier degradation model is the information about the carrier energetical distribution function which allows us to asses the carrier(More)
We show that - in contrast to previous findings - hot-carrier degradation (HCD) in scaled nMOSFETs with a channel length of 44 nm appears to be weaker at elevated temperatures. However, the distance between degradation traces obtained at 25 and 75° C reduces as the stress voltages increase and at a certain voltage the changes of the linear drain(More)
We study the effect of interface states, generated during hot-carrier stress, on the carrier energy distribution functions (DFs) and check whether this effect perturbs the results of our hot-carrier degradation model. These studies are performed using SiON nMOSFETs with a gate length of 65 nm as exemplary devices. We carry out simulations with different(More)