S. Dusko Ehrlich

Learn More
To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene(More)
Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust(More)
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family(More)
Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage(More)
Lactococcus lactis is a nonpathogenic AT-rich gram-positive bacterium closely related to the genus Streptococcus and is the most commonly used cheese starter. It is also the best-characterized lactic acid bacterium. We sequenced the genome of the laboratory strain IL1403, using a novel two-step strategy that comprises diagnostic sequencing of the entire(More)
To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximately 4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential(More)
In lactococci, the study of chromosomal genes and their regulation is limited by the lack of an efficient transposon mutagenesis system. We associated the insertion sequence ISS1 with the thermosensitive replicon pG+ host to generate a mutagenic tool that can be used even in poorly transformable strains. ISS1 transposition is random in different lactococcal(More)
To study the functions of the uncharacterized open reading frames identified in the Bacillus subtilis genome, several vectors were constructed to perform insertional mutagenesis in the chromosome. All the pMUTIN plasmids carry a lacZ reporter gene and an inducible Pspac promoter, which is tightly regulated and can be induced about 1000-fold. The integration(More)
The lactic acid bacterium Streptococcus thermophilus is widely used for the manufacture of yogurt and cheese. This dairy species of major economic importance is phylogenetically close to pathogenic streptococci, raising the possibility that it has a potential for virulence. Here we report the genome sequences of two yogurt strains of S. thermophilus. We(More)
Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly sequenced samples of the Metagenomics of the Human Intestinal(More)