S. Daniel Jacob

Learn More
To simulate tropical cyclone (TC) intensification, coupled ocean–atmosphere prediction models must realistically reproduce the magnitude and pattern of storm-forced sea surface temperature (SST) cooling. The potential for the ocean to support intensification depends on the thermal energy available to the storm, which in turn depends on both the temperature(More)
Upper-ocean heat and mass budgets are examined from three snapshots of data acquired during and after the passage of Hurricane Gilbert in the western Gulf of Mexico. Measurements prior to storm passage indicated a warm core eddy in the region with velocities of O(1) m s Ϫ1. Based upon conservation of heat and mass, the three-dimensional mixed layer(More)
Oceanic mixed layer (ML) response to Hurricane Gilbert in the western Gulf of Mexico is investigated in this paper using the Miami Isopycnic Coordinate Ocean Model (MICOM). Three snapshots of oceanic observations indicated that a Loop Current Warm Core Eddy (LCWCE) contributed significantly to the ML heat and mass budgets. To examine the time evolution of(More)
The three-dimensional hurricane-induced ocean response is determined from velocity and temperature profiles acquired in the western Gulf of Mexico between 14 and 19 September 1988 during the passage of Hurricane Gilbert. The asymmetric wind structure of Gilbert indicated a wind stress of 4.2 N m Ϫ2 at a radius of maximum winds (R max) of 60 km. Using(More)
Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C,(More)
The third Stokes parameter will soon be observed from space for the first time at L-band by SMOS and Aquarius [Martin-Neira et al, 2002; Le Vine et al, 2007]. The correlation between polarizations (i.e. third Stokes parameter) is of interest at L-band to measure Faraday rotation (Yueh, 2000) and also to indicate novel features of the surface. However, in(More)
Popular Summary Faraday rotation is a change in the polarization vector of electromagnetic radiation that occurs as the waves propagate from the Earth surface through the ionosphere to a spaceborne sensor. This change can cause errors in monitoring parameters at the surface such as soil moisture and sea surface salinity and it is an important consideration(More)