Learn More
Melatonin, the principal pineal gland hormone, exerts a direct antiproliferative effect on estrogen-responsive MCF-7 cells in culture. The purpose of the current study was to investigate the effects of melatonin on the invasion capacity of MCF-7 cells. In vitro, melatonin at physiological doses (1 nM) reduced (P < 0.001) the invasiveness of tumoral cells(More)
Based on the hypothesis of the magnetoreceptor function of the pineal gland, a comparative study has been made, with electronic microscopy, of the numerical variations of the synaptic ribbons of the pinealocytes (indicating the cellular metabolic activity) of the groups of rats, under magnetic storm conditions and in calm days. In this quantitative study it(More)
In this article we review the state of the art on the role of the pineal gland and melatonin in mammary cancer tumorigenesis in vivo as well as in vitro. The former hypothesis of a possible role of the pineal gland in mammary cancer development was based on the evidence that the pineal, via its main secretory product, melatonin, downregulates some of the(More)
Cadmium (Cd) is a heavy metal affecting human health both through environmental and occupational exposure. There is evidence that Cd accumulates in several organs and is carcinogenic to humans. In vivo, Cd mimics the effect of estrogens in the uterus and mammary gland. In estrogen-responsive breast cancer cell lines, Cd stimulates proliferation and can also(More)
Melatonin is an indolic hormone produced mainly by the pineal gland. The former hypothesis of its possible role in mammary cancer development was based on the evidence that melatonin down-regulates some of the pituitary and gonadal hormones that control mammary gland development and which are also responsible for the growth of hormone-dependent mammary(More)
Endothelial cells represent one of the critical cellular elements in tumor microenvironment playing a crucial role in the growth and progression of cancer through controlling angiogenesis. Vascular endothelial growth factor (VEGF) produced from tumor cells is essential for the expansion of breast cancer and may function in both paracrine and autocrine(More)
Melatonin inhibits the growth of breast cancer cells by interacting with estrogen-responsive pathways, thus behaving as an antiestrogenic hormone. Recently, we described that melatonin reduces aromatase expression and activity in MCF-7 human breast cancer cells, thus modulating the local estrogen biosynthesis. To investigate the in vivo aromatase-inhibitory(More)
In this article, we review the experimental data supporting an oncostatic role of melatonin on hormone-dependent mammary tumors. Beginning with the evidence on the role of estrogens in breast cancer etiology and mammary tumor growth, we summarize the actual therapeutic strategies with estrogens as a target. Additionally, we demonstrate that melatonin(More)
The aim of the present work was to study whether melatonin, at physiological concentrations, exerts its antiproliferative effects on MCF-7 human breast cancer cells by inducing the expression of some of the proteins involved in the control of the cell cycle. MCF-7 cells were cultured for 48 h in DMEM media containing either melatonin (1 nM) or the diluent(More)
Background:Melatonin reduces the development of breast cancer interfering with oestrogen-signalling pathways, and also inhibits aromatase activity and expression. Our objective was to study the promoters through which melatonin modifies aromatase expression, evaluate the ability of melatonin to regulate cyclooxygenases and assess whether the effects of(More)