S C el-Saleh

Learn More
Several conflicting reports have been made regarding the affinity of myosin heads (subfragment 1 and heavy meromyosin (HMM) for regulated actin (actin complexed with tropomyosin and troponin) at low ionic strength (mu = 18-50 mM) and whether or not this interaction is Ca2+ sensitive (Chalovich, J. M., and Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437;(More)
When the pH surrounding myofilaments of striated muscle is reduced there is an inhibition of both the actin-myosin reaction as well as the Ca2+-sensitivity of the myofilaments. Although the mechanism for the effect of acidic pH on Ca2+-sensitivity has been controversial, we have evidence for the hypothesis that acidic pH reduces the affinity of troponin C(More)
1. The intrinsic fluorescence of epoxysuccinyl-inhibited calpain II undergoes a Ca2(+)-dependent decrease which contrasts with the increase observed for calmodulin. 2. Calpain II was inhibited by the calmodulin antagonist toluidinylnaphthalenesulfonate (TNS), and a Ca2(+)-dependent increase in TNS fluorescence intensity was observed for(More)
Inhibition of muscle force development by acidic pH is a well known phenomenon, yet the exact mechanism by which a decrease in pH inhibits the Ca2+-activated force in striated myofilaments remains poorly understood. Whether or not the deactivation by acidic pH involves direct competition between Ca2+ and protons for regulatory binding sites on fast skeletal(More)
Steric blocking of actin-myosin interaction by tropomyosin has been a working hypothesis in the study of the regulation of skeletal muscle contraction, yet the simple movement of actin-associated tropomyosin from a myosin-blocking position (relaxation) to a nonblocking position (contraction) cannot adequately account for all of the biophysical and(More)
We have used an SV40-based shuttle vector, pZ189, to investigate the capacity of HeLa cell extracts to reproduce the in vivo process of mutation fixation. We showed previously that when UV-irradiated pZ189 is replicated in these extracts, bypass of UV photoproducts occurs, resulting in base substitution mutations in the supF gene of the vector. Here we(More)
It has been possible to specifically label rabbit skeletal muscle actin at Lys-237 with 2,4-pentanedione, producing an enamine. This reaction can be reversed with hydroxylamine. The modification can be carried out with actin in either the G- or F-forms and does not affect polymerization-depolymerization. The modification does affect, however, the(More)
In previous work, we (El-Saleh, S., Theiret, R., Johnson, P., and Potter, J. D. (1984) J. Biol. Chem. 259, 11014-11021) presented evidence that Ca2+ activation of skeletal myofilaments depends on a specific actin domain. We showed that rabbit skeletal thin filaments reconstituted with actin modified at Lys-237 activate heavy meromyosin X Mg2+-ATPase(More)
Although regulatory Ca2+-binding domains of calmodulin (CaM) and troponin C (TnC) are similar, it is interesting that agents that act as CaM antagonists appear to be TnC "agonists" in that they sensitize cardiac myofilaments to activation by Ca2+ (El-Saleh, S., and Solaro, R. J. (1987) Biophys. J. 51, 325 (abstr.). This indicates that the effects of agents(More)