Learn More
Prediction of monsoon changes in the coming decades is important for infrastructure planning and sustainable economic development. The decadal prediction involves both natural decadal variability and anthropogenic forcing. Hitherto, the causes of the decadal variability of Northern Hemisphere summer monsoon (NHSM) are largely unknown because the monsoons(More)
As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can(More)
In this paper a numerical model for predicting waves generated by nearshore submarine mass-movements is described. The model is based on the Reynolds averaged Navier–Stokes (RANS) equations with the k2e turbulence model. The volume of fluid (VOF) method is employed to track the free surface. Numerical results obtained from the present model are validated(More)
institutional repository or funder's repository and make it publicly available immediately. Abstract The global monsoon (GM) is a defining feature of the annual variation of Earth's climate system. Quantifying and understanding the present-day monsoon precipitation change are crucial for prediction of its future and reflection of its past. Here we show that(More)
A diverse series of research projects have taken place or are underway at the NEES Tsunami Research Facility at Oregon State University. Projects range from the simulation of the processes and effects of tsunamis generated by sub-aerial and submarine landslides (NEESR, Georgia Tech.), model comparisons of tsunami wave effects on bottom profiles and scouring(More)
We demonstrate numerically a 2-D nanostructured design for light trapping in a low band-gap polymer solar cell. Finite element method simulations are used to study the effect of varying nanostructure periodicity, height, and shape on active layer absorption. Maintaining a constant active layer thickness of 100nm we observe an enhancement in solar absorption(More)
  • S C Yim, M Asce, D Yuk, A Panizzo, M Di Risio, F Liu +1 other
  • 2008
The water wave generation by a freely falling rigid body is examined in this paper. Two different two-dimensional numerical approaches have been utilized to simulate the time histories of fluid motion, free surface deformation, and the vertical displacement of a rectangular-shape rigid body. While the first approach is based on the Reynolds-averaged(More)
  • 1