Learn More
Nonparametric regression, often called smoothing, is a widely used data analysis method. The use of a smoother requires the choice of a smoothing parameter that by balancing delity and roughness controls how much smoothing is done. Two popular selection criteria for choosing the smoothing parameter are C p and generalized maximum likelihood (GML). Each of(More)
Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all(More)
SUMMARY The standard matrix permanent is the solution to a number of combinatorial and graph-theoretic problems, and the α-weighted permanent is the density function for a class of Cox processes called boson processes. The exact computation of the ordinary permanent is known to be #P-complete, and the same appears to be the case for the α-permanent for most(More)
We provide a complete proof of the convergence of a recently developed sampling algorithm called the equi-energy (EE) sampler (Kou, Zhou, and Wong, 2006) in the case that the state space is countable. We show that in a countable state space, each sampling chain in the EE sampler is strongly ergodic a.s. with the desired steady-state distribution.(More)
This paper studies, under the setting of spline regression, the connection between finite-sample properties of selection criteria and their asymptotic counterparts, focusing on bridging the gap between the two. We introduce a bias-variance decomposition of the prediction error, using which it is shown that in the asymptotics the bias term dominates the(More)
BACKGROUND Accurate influenza activity forecasting helps public health officials prepare and allocate resources for unusual influenza activity. Traditional flu surveillance systems, such as the Centers for Disease Control and Prevention's (CDC) influenza-like illnesses reports, lag behind real-time by one to 2 weeks, whereas information contained in(More)
This paper studies, under the setting of spline regression, the connection between finite-sample properties of selection criteria and their asymptotic counterparts, focusing on bridging the gap between the two. We introduce a bias-variance decomposition of the prediction error, using which it is shown that in the asymptotics the bias term dominates the(More)
Dengue is a mosquito-borne disease that threatens over half of the world's population. Despite being endemic to more than 100 countries, government-led efforts and tools for timely identification and tracking of new infections are still lacking in many affected areas. Multiple methodologies that leverage the use of Internet-based data sources have been(More)
  • 1