S Behrooz Ghorishi

Learn More
The capture of elemental mercury (Hg0) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sor-bents was examined in this bench-scale study under conditions prevalent in coal-fired utilities. Ca-based sorbent performances were compared with that of an activated carbon. Hg0 capture of about 40% (nearly half that of the activated carbon) was(More)
Experimental data from a laboratory-scale wet scrubber simulator confirmed that oxidized mercury, Hg2+, can be reduced by aqueous S(IV) (sulfite and/or bisulfite) species and results in elemental mercury (HgO) emissions under typical wet FGD scrubber conditions. The S(IV)-induced Hg2+ reduction and Hg0 emission mechanism can be described by a model which(More)
Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing(More)
Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A(More)
Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds)(More)
A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low(More)
The formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (hereafter called PCDD/Fs), downstream from the combustion zone of a spouted bed combustor was heterogeneously catalyzed within seconds in the temperature range 430-390 "C and in the presence of fine sand particles. The PCDD/Fs formation was not observed at substantially lower temperatures(More)
Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg0) by activated carbon. Adsorption of Hg0 by several commercial activated carbons was examined at different C:Hg ratios (by weight) (350:1-29,000:1), particle sizes (4-44 microns), Hg0 concentrations (44, 86, and 124 ppb), and temperatures(More)
  • 1