Learn More
We have investigated the possible implication of the cell cycle-regulated K(+) channel ether à go-go (EAG) in cell proliferation and transformation. We show that transfection of EAG into mammalian cells confers a transformed phenotype. In addition, human EAG mRNA is detected in several somatic cancer cell lines, despite being preferentially expressed in(More)
Previously, we characterized a Shaker-related family of voltage-gated potassium channels (RCK) in rat brain. Now, we describe a second family of voltage-gated potassium channels in the rat nervous system. This family is related to the Drosophila Shaw gene and has been dubbed Raw. In contrast to the RCK potassium channel family the Raw family utilizes(More)
We have isolated and characterized a human cDNA (HBK2) that is homologous to novel member (RCK2) of the K+ channel RCK gene family expressed in rat brain. RCK2 mRNA was detected predominantly in midbrain areas and brainstem. The primary sequences of the HBK2/RCK2 K+ channel proteins exhibit major differences to other members of the RCK gene family. The bend(More)
mRNAs encoding four members of the RCK potassium channel family, named RCK1, RCK3, RCK4 and RCK5 have been analyzed by RNA blot hybridization experiments using specific RNA probes. Each probe recognizes a single mRNA species, their sizes ranging from approximately 4600 nucleotides up to approximately 11,000 nucleotides. The expression of RCK mRNAs as well(More)
RNA blot hybridization analyses using probes specific for sodium channels I, II and III revealed high levels of sodium channel I mRNA and low levels of sodium channel II and III mRNAs in peripheral nervous system (PNS) tissues. The developmental expression patterns of these mRNAs were generally similar to those described for the central nervous system. The(More)
AMPA-type glutamate receptors (GluRs) mediate synaptic excitation in networks of cultured rat hypothalamic neurons [18, 25]. Under voltage clamp the agonists quisqualate and AMPA induce current responses which consist of a maintained and/or transient component depending on the concentrations applied. The current-voltage relationship for both components is(More)
  • 1