Learn More
Traumatic articular cartilage lesions have a limited capacity to heal. We tested the hypothesis that overexpression of a human insulin-like growth factor I (IGF-I) cDNA by transplanted articular chondrocytes enhances the repair of full-thickness (osteochondral) cartilage defects in vivo. Lapine articular chondrocytes were transfected with expression plasmid(More)
A prospective case-control study of Lassa fever was established in Sierra Leone to measure the frequency and case-fatality ratio of Lassa fever among febrile hospital admissions and to better delineate the clinical diagnosis and course of this disease. Lassa fever was responsible for 10%-16% of all adult medical admissions and for approximately 30% of adult(More)
We examined nonviral, lipid-mediated gene transfer methods as potential tools for efficient transfection of articular chondrocytes. Transfection conditions were determined for primary cultures of normal human articular, osteoarthritic human articular and normal bovine articular chondrocytes using a lacZ reporter gene construct with the commercially(More)
Articular cartilage, the tissue that forms the gliding surface of joints, has a poor regenerative capacity. Insulin-like growth factor-I (IGF-I) is a polypeptide that is anabolic and mitogenic for cartilage. Transfection of articular chondrocytes with an expression plasmid vector containing the cDNA for human IGF-I under the control of the cytomegalovirus(More)
Gene transfer technology has opened novel treatment avenues toward the treatment of damaged musculoskeletal tissues, and may be particularly beneficial to articular cartilage. There is no natural repair mechanism to heal damaged or diseased cartilage. Existing pharmacologic, surgical and cell based treatments may offer temporary relief but are incapable of(More)
  • 1