S. Andrew Gadsden

Learn More
A multilayered neural network is a multi-input, multi-output nonlinear system in which network weights can be trained by using parameter estimation algorithms. In this paper, a novel training method is proposed. This method is based on the relatively new smooth variable structure filter (SVSF) and is formulated for feed-forward multilayer perceptron(More)
– In this paper, a new state and parameter estimation method is introduced based on the particle filter (PF) and the smooth variable structure filter (SVSF). The PF is a popular estimation method, which makes use of distributed point masses to form an approximation of the probability distribution function (PDF). The SVSF is a relatively new estimation(More)
—Target tracking algorithms are important for a number of applications, including: physics, air traffic control, ground vehicle monitoring, and processing medical images. The probabilistic data association algorithm, in conjunction with the Kalman filter (KF), is one of the most popular and well-studied strategies. The relatively new smooth variable(More)