S. A. Tretyakov

Learn More
In a spatially dispersive medium, the electric dipole moment of an inclusion cannot be related to the macroscopic electric field through a local relation. Several recent works have emphasized the role of spatial dispersion in wire media, and demonstrated that arrays of parallel metallic wires may behave very differently from a uniaxial local material with(More)
In this paper, a nonlocal homogenization model is proposed for the analysis of the spectrum of natural modes on sub-wavelength mushroom-type high-impedance surfaces composed of a capacitive grid connected to a grounded wire-medium (WM) slab. Modal characteristics of mushroom structures are studied in conjunction with the surface-wave and leaky-wave(More)
There has been an increasing interest in recent years in artificial chiral materials in the microwave range. Electromagnetic propagation in chiral medium differs from the behavior of simpler, isotropic materials in several ways (A linearly polarized wave propagating in a chiral medium undergoes a rotation of its polarization. Therefore chiral material has(More)
In this paper, propagation properties of a parallel-plate waveguide with tunable artificial impedance surfaces as sidewalls are studied both analytically and numerically. The impedance surfaces comprise an array of patches over a dielectric slab with embedded metallic vias. The tunability of surfaces is achieved with varactors. Simple design equations for(More)
The equivalent-circuit model for artificial magnetic materials based on various arrangements of broken loops is generalized by taking into account losses in the substrate or matrix material. It is shown that a modification is needed to the known macroscopic permeability function in order to correctly describe these materials. Depending on the dominating(More)
In this review paper I discuss electrically thin composite layers, designed to perform desired operations on applied electromagnetic fields. Starting from a historical overview and based on a general classification of metasurfaces, I give an overview of possible functionalities of the most general linear metasurfaces. The review is concluded with a short(More)
Understanding the impact of order and disorder is of fundamental importance to perceive and to appreciate the functionality of modern photonic metasurfaces. Metasurfaces with disordered and amorphous inner arrangements promise to mitigate problems that arise for their counterparts with strictly periodic lattices of elementary unit cells such as, e.g.,(More)