S. A. Albaladejo

Learn More
Radiative corrections to the polarizability tensor of isotropic particles are fundamental to understand the energy balance between absorption and scattering processes. Equivalent radiative corrections for anisotropic particles are not well known. Assuming that the polarization within the particle is uniform, we derived a closed-form expression for the(More)
Arrays of transparent dielectric nanorods are shown to produce very large local field enhancements at specific resonant conditions. These structures would lead to enhancement of molecular fluorescence signals without quenching. The resonant angular width and field enhancements are analytically derived as a function of wavelength, grating period, rod radius,(More)
Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are(More)
Ratchets are dynamic systems where particle transport is induced by zero-average forces due to the interplay between nonlinearity and asymmetry. Generally, they rely on the effect of a strong external driving. We show that stationary optical lattices can be designed to generate particle flow in one direction while requiring neither noise nor driving. Such(More)
We study the diffusion of a metal nanoparticle in the nonconservative force field of an optical vortex lattice. Radiation pressure in the vortex array is shown to induce a giant enhancement over the free thermal diffusion. Langevin dynamics simulations show that the diffusion coefficient of (50 nm radius) gold particles at room temperature is enhanced by 2(More)
The diffusion of silver nanoparticles in water at 298K inside an optical vortex lattice is analyzed in detail by numerical simulations. At power densities of the order of those used to trap nanoparticles with optical tweezers, the dynamic response shows three different regimes depending on the light wavelength. In the first one particles get trapped inside(More)
  • 1