Søren U. Nielsen

Learn More
Hepatitis C virus (HCV) RNA circulates in the blood of persistently infected patients in lipoviroparticles (LVPs), which are heterogeneous in density and associated with host lipoproteins and antibodies. The variability and lability of these virus-host complexes on fractionation has hindered our understanding of the structure of LVP and determination of the(More)
Hepatitis C virus (HCV) infection is dependent on at least three coreceptors: CD81, scavenger receptor BI (SR-BI), and claudin-1. The mechanism of how these molecules coordinate HCV entry is unknown. In this study we demonstrate that a cell culture-adapted JFH-1 mutant, with an amino acid change in E2 at position 451 (G451R), has a reduced dependency on(More)
Hepatitis C virus (HCV) particles found in vivo are heterogeneous in density and size, but their detailed characterization has been restricted by the low titre of HCV in human serum. Previously, our group has found that HCV circulates in blood in association with very-low-density lipoprotein (VLDL). Our aim in this study was to characterize HCV(More)
BACKGROUND The density of hepatitis C virus (HCV) in plasma is heterogeneous but the factors which influence this are poorly understood. Evidence from animal models and cell culture suggest that low-density apolipoprotein B (apoB)-associated HCV lipoviral particles (LVP) are more infectious than high-density HCV. Objective To measure LVP in patients with(More)
A group of low molecular weight fatty acid-binding cytosolic proteins, FABPc with high abundance in heart, liver, skeletal muscle, intestine and adipose tissue, are anticipated to play a role in long-chain fatty acid metabolism in these tissues. Recently, a FABPc with MT 15 kDa has been purified from human heart muscle and found to be present in levels 2–4%(More)
BACKGROUND & AIMS The physical association of hepatitis C virus (HCV) particles with lipoproteins in plasma results in distribution of HCV in a broad range of buoyant densities. This association is thought to increase virion infectivity by mediating cell entry via lipoprotein receptors. We sought to determine if factors that affect triglyceride-rich(More)
Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence(More)
HCV recovered from low density fractions of infected blood is associated with lipid and host apo-lipoproteins in lipo-viro-particles (LVP). It has been proposed that these particles are capable of binding and entering hepatocytes by viral glycoprotein independent mechanisms utilizing uptake pathways of normal host lipoproteins after binding to cell surface(More)
Hepatitis C virus (HCV) is a major pathogen with approximately 3% of the world's population (over 170 million) infected. Epidemiological studies have shown HCV is associated with an increased risk of cardiovascular and cerebrovascular mortality as well as peripheral arterial disease. This is despite HCV inducing an ostensibly favourable lipid profile with(More)
We have previously shown that bivalent human gamma1 CD3 monoclonal antibody (mAb) is ineffective at mediating lysis of human T cells with human complement. In this paper we have used genetic engineering and sulfur chemistry to prepare 2 types of human gamma1 CD3 mAb dimer, with the aim of improving complement lysis activity. The IgG molecules forming the(More)