Learn More
The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc and other essential nutrients. Major bottlenecks in plant(More)
Nutrients destined for the developing cereal grain encounter several restricting barriers on their path towards their final storage sites in the grain. In order to identify transporters and chelating agents that may be involved in transport and deposition of zinc in the barley grain, expression profiles have been generated of four different tissue types:(More)
In recent years, the increasing knowledge on the molecular mechanisms underlying mineral uptake, transport, homeostasis and deposition within plants, has paved the way for a more targeted approach to improving the nutrient status of crop plants based on biotechnology. In the present paper we will briefly review existing knowledge on the distribution and(More)
Image analysis techniques were used to examine changes in the intrinsic optical properties in the isolated brain of the guinea-pig in order to map normal neuronal activity patterns and seizure propagation in the olfactory cortex. Electrical stimulation of the lateral olfactory tract decreased light reflectance in distant cortical areas where fibres of the(More)
From nodule and seedling cDNA libraries we isolated cDNA copies of two mRNAs, derived from the genes gmrl and gmr2, encoding members of the Ypt/Rab family of small GTP-binding proteins. Two deduced protein products, GMR1 and GMR2, were found to be nearly identical differing by only four amino acids in the analysed parts. The two putative proteins are 79%(More)
This paper presents the cloning and biochemical characterisation of the cysteine protease Tr-cp 14 from white clover (Trifolium repens). The predicted amino acid sequence of Tr-cp 14 is 71%, 74% and 74% identical to the cysteine proteases XCP1 and XCP2 from Arabidopsis thaliana, and p48h-17 from Zinnia elegans, respectively. These cysteine proteases have(More)
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in(More)
Heavy metal transporters belonging to the P(1B)-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. Heavy metal transporters belonging to the P(1B)-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. In this study we investigated the properties of HvHMA1, which is a barley orthologue of(More)
Genetic analysis, particularly the development of genetic linkage maps in forage grass species, lags well behind other members of the Poaceae. Comparative mapping within this family has revealed extensive conservation in gene and marker synteny among chromosomes of diverse genera. Recently, the ability to transfer mapped STS markers between barley and wheat(More)