Learn More
Nitric oxide (NO) binds with high affinity to the heme of soluble guanylyl cyclase (sGC), resulting in accumulation of the second messenger cGMP in many biological systems. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) was recently described as potent and selective inhibitor of sGC, providing an invaluable tool with which to settle the function of the(More)
A variant of the alpha 2 subunit of soluble guanylyl cyclase (alpha 2i) containing 31 additional amino acids was identified in a number of cell lines and tissues. The in-frame sequence of the insert was within the proposed catalytic domain of guanylyl cyclases and was homologous to a region within the putative catalytic domain of adenylyl cyclases.(More)
The nitric oxide (NO) receptor enzyme soluble guanylate cyclase (sGC) contains one prosthetic heme group as an αβ heterodimer, and two heterodimer isoforms (α(1)β(1), α(2)β(1)) were characterized to have enzyme activity. To test the irreversible inflammation-dependent regulation of sGC in odontoblasts, we incubated decalcified frozen sections of healthy and(More)
Soluble guanylyl cyclase (sGC), the target enzyme of the signalling molecule NO, contains one prosthetic haem group and consists of an alpha and a beta subunit. So far, only the alpha1beta1 heterodimer has been shown to exist in different cells and tissues, and most biochemical studies of sGC have been performed with the alpha1 beta1 heterodimer. Here we(More)
The messenger molecule cyclic guanosine monophosphate (cGMP) is produced by different isoforms of the enzyme guanylate cyclase (GC). Natriuretic peptides (ANP and CNP) bind to and activate particulate GCs, whereas NO and CO activate a soluble form of GC. The specific relevance of the cGMP system for reproductive functions has been recently demonstrated by(More)
Modulation of soluble guanylate cyclase (sGC) by nitric oxide (NO) is altered in brain from experimental animals with hyperammonemia with or without liver failure. The aim of this work was to assess the content and modulation of sGC in brain in chronic liver failure in humans. Expression of the alpha-1, alpha-2, and beta-1 subunits of sGC was measured by(More)
Previously characterized mammalian soluble guanylyl cyclases form alpha/beta heterodimers that can be activated by the gaseous messenger, nitric oxide, and the novel guanylyl cyclase modulator YC-1. Four mammalian subunits have been cloned named alpha(1), beta(1), alpha(2), and beta(2). The alpha(1)/beta(1) and alpha(2)/beta(1) heterodimeric enzyme isoforms(More)
Nitric oxide sensitive guanylyl cyclase (NOsGC) is a heterodimeric enzyme consisting of an α and a β subunit. Two heterodimeric enzymes are known to be important for NO-signalling in humans: α(1)/β(1) and α(2)/β(1). No difference had so far been detected with respect to their pharmacological properties, but as we show in the present paper the new drugs(More)
Previous studies demonstrated that the Mg complex of ATP decreases glyburide- and increases diazoxide-binding to membranes from pancreatic islets. To examine further the mechanism of these effects, the sulfonylurea receptors in microsomes of the hamster B-cell line HIT-T15 were solubilized with detergents. Maximum recovery of receptors (40%) was obtained(More)
The muscles of the corpus cavernosum of the penis relax in response to stimulation of non-adrenergic, non-cholinergic nerves or nitric oxide (NO)-donating drugs to elicit erection. It is generally assumed that NO mediates this effect via activation of soluble guanylyl cyclase and a subsequent increase in cyclic guanosine 3', 5'-monophosphate concentration.(More)