Learn More
A single-input whispering gallery optical microbubble resonator is presented. Spherical microbubbles with diameters less than 100 μm, micrometer-sized wall thicknesses, and a single opening or input were fabricated by heating the tapered tip of a pressurized glass capillary using a CO(2) laser. Optical whispering gallery modes with Q factors of ∼10(5) were(More)
The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the(More)
Optical properties and sensing capabilities of fused silica microbubbles were studied numerically using a finite element method. Mode characteristics, such as quality factor (Q) and effective refractive index, were determined for different bubble diameters and shell thicknesses. For sensing applications with whispering gallery modes (WGMs), thinner shells(More)
The evanescent field of an optical nanofiber presents a versatile interface for the manipulation of micron-scale particles in dispersion. Here, we present a detailed study of the optical binding interactions of a pair of 3.13 μm SiO(2) spheres in the nanofiber evanescent field. Preferred equilibrium positions for the spheres as a function of nanofiber(More)
We describe a novel method for making microbottle-shaped lasers by using a CO2 laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO2 laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting(More)
We study the coupling of spontaneously emitted photons from laser-cooled 85 Rb atoms to the guided modes of an optical nanofibre to demonstrate the potential such fibres offer as tools for detecting and manipulating cold atoms, even when the number of atoms is very small. We also demonstrate the integration of an optical nanofibre into an absorption(More)
Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass, optical microbubble resonators. Evanescent field(More)
A hollow, bottle-like microresonator (BLMR) was fabricated from a microcapillary with a nearly parabolic profile. From simulations at 1.55 μm the fundamental bottle mode is shown to be in the anomalous dispersion regime, while the conventional whispering gallery mode, confined to the center of the BLMR, is in the normal dispersion regime. Therefore, we have(More)
Coupled-mode-induced transparency is realized in a single microbubble whispering-gallery mode resonator. Using aerostatic tuning, we find that the pressure-induced shifting rates are different for different radial order modes. A finite element simulation considering both the strain and stress effects shows a GHz/bar difference, and this is confirmed by(More)
While conventional optical trapping techniques can trap objects with submicron dimensions, the underlying limits imposed by the diffraction of light generally restrict their use to larger or higher refractive index particles. As the index and diameter decrease, the trapping difficulty rapidly increases; hence, the power requirements for stable trapping(More)