Séverine Urdy

Learn More
This article explores the close relationships between growth rate and allometries of molluscan shells. After reviewing the previous theoretical approaches devoted to the understanding of shell form and its morphogenesis, we present a free-form vector model which can simulate apertural shape changes and nonlinear allometries. Shell morphology is generated by(More)
In recent years, developmental plasticity has received increasing attention. Specifically, some studies highlighted a possible association between shell shape and growth rates in intertidal gastropods. We use a growth vector model to study how hypothetical growth processes could underlie developmental plasticity in molluscs. It illustrates that variation in(More)
The origin of jaws remains largely an enigma that is best addressed by studying fossil and living jawless vertebrates. Conodonts were eel-shaped jawless animals, whose vertebrate affinity is still disputed. The geometrical analysis of exceptional three-dimensionally preserved clusters of oro-pharyngeal elements of the Early Triassic Novispathodus, imaged(More)
  • Séverine Urdy
  • Biological reviews of the Cambridge Philosophical…
  • 2012
In the 1950s, embryology was conceptualized as four relatively independent problems: cell differentiation, growth, pattern formation and morphogenesis. The mechanisms underlying the first three traditionally have been viewed as being chemical in nature, whereas those underlying morphogenesis have usually been discussed in terms of mechanics. Often,(More)
The molluscan shell can be viewed as a petrified representation of the organism's ontogeny and thus can be used as a record of changes in form during growth. However, little empirical data is available on the actual growth and form of shells, as these are hard to quantify and examine simultaneously. To address these issues, we studied the growth and form of(More)
The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie,(More)
  • 1