Learn More
Automatic recognition of biomedical names is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. In recent years, various solutions have been implemented to tackle this problem. However, limitations regarding system characteristics, customization and usability still hinder their wider application(More)
Cough is a common symptom of many respiratory diseases. The evaluation of its intensity and frequency of occurrence could provide valuable clinical information in the assessment of patients with chronic cough. In this paper we propose the use of hidden Markov models (HMMs) to automatically detect cough sounds from continuous ambulatory recordings. The(More)
The objective monitoring of cough for extended periods of time has long been recognized as an important step towards a better understanding of this symptom, and a better management of chronic cough patients. In this paper, we present a system for the automatic analysis of 24-h, continuous, ambulatory recordings of cough. The system uses audio recordings(More)
The oral cavity is a complex ecosystem where human chemical compounds coexist with a particular microbiota. However, shifts in the normal composition of this microbiota may result in the onset of oral ailments, such as periodontitis and dental caries. In addition, it is known that the microbial colonization of the oral cavity is mediated by protein-protein(More)
The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of(More)
BACKGROUND Advances in biotechnology and in high-throughput methods for gene analysis have contributed to an exponential increase in the number of scientific publications in these fields of study. While much of the data and results described in these articles are entered and annotated in the various existing biomedical databases, the scientific literature(More)
Concept recognition is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner or using general information extraction frameworks, which are not optimized for the biomedical domain and normally require the integration of complex(More)
With the overwhelming amount of biomedical textual information being produced, several manual curation efforts have been set up to extract and store concepts and their relationships into structured resources. As manual annotation is a demanding and expensive task, computerized solutions were developed to perform such tasks automatically. However, high-end(More)
SUMMARY The continuous growth of the biomedical scientific literature has been motivating the development of text-mining tools able to efficiently process all this information. Although numerous domain-specific solutions are available, there is no web-based concept-recognition system that combines the ability to select multiple concept types to annotate, to(More)
MOTIVATION The recognition of named entities (NER) is an elementary task in biomedical text mining. A number of NER solutions have been proposed in recent years, taking advantage of available annotated corpora, terminological resources and machine-learning techniques. Currently, the best performing solutions combine the outputs from selected annotation(More)