Sébastien Ulrich

Learn More
There is a growing need for biocompatible click reactions in order to prepare multifunctional conjugates, which are valuable molecules for innovative biomedical applications. In this context, we review the recent advances in the implementation of oxime ligation for the synthesis of multivalent or multicomponent systems. The value of these products is(More)
Herein, we present a study of the pharmacokinetics and biodistribution of a butadiyne-linked conjugated porphyrin dimer (Oxdime) designed to have high near-infrared (NIR) 2-photon absorption cross-section for photodynamic therapy (PDT). Changes in biodistribution over time were monitored in mice carrying B16-F10 melanoma xenografts, following intravenous(More)
Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading.(More)
The design of smart nonviral vectors for gene delivery is of prime importance for the successful implementation of gene therapies. In particular, degradable analogues of macromolecules represent promising targets as they would combine the multivalent presentation of multiple binding units that is necessary for achieving effective complexation of therapeutic(More)
Bisfunctionalized guanidinium compounds displaying aromatic side groups of varying size are shown to self-assemble in aqueous solution with single-stranded DNA through phosphodiester backbone recognition. Competition experiments indicate the importance of π-stacking interactions in the stabilization of these DNA-templated supramolecular self-assemblies.
Artificial multivalent recognition systems offer promising perspectives for developing synthetic compounds capable of interacting effectively and selectively with biomolecules in aqueous medium. The identification of multi-point binding ligands requires screening of a large number of complex structures, with different spacers, different ligands, and varying(More)
Invited for the cover of this issue are Jean-Yves Winum and co-workers at University of Montpellier (France) and University of Florence (Italy). The image depicts the multivalency approach applied to zinc metalloenzyme carbonic anhydrases. Read the full text of the article at 10.1002/chem.201501037.
X-ray structure determinations on four Diels-Alder adducts derived from the reactions of cyano- and ester-substituted alkenes with anthracene and 9,10-dimethylanthracene have shown the bonds formed in the adduction to be particularly long. Their lengths range from 1.58 to 1.62 Å, some of the longest known for Diels-Alder adducts. Formation of the four(More)
DNA-dependent RNA polymerases such as T7 RNA polymerase (T7 RNAP) perform the transcription of DNA into mRNA with high efficiency and high fidelity. Although structural studies have provided a detailed account of the molecular basis of transcription, the relative importance of factors like hydrogen bonds and steric effects remains poorly understood. We(More)
We report herein the implementation of a dynamic covalent chemistry approach to the generation of multivalent clusters for DNA recognition. We show that biomolecular clusters can be expressed in situ by a programmed self-assembly process using chemoselective ligations. The cationic clusters are shown, by fluorescence displacement assay, gel electrophoresis(More)