Learn More
Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the(More)
Current approaches to mass spectrometry (MS) require ionization of the analytes of interest. For high-mass species, the resulting charge state distribution can be complex and difficult to interpret correctly. Here, using a setup comprising both conventional time-of-flight MS (TOF-MS) and nano-electromechanical systems-based MS (NEMS-MS) in situ, we show(More)
Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted(More)
This article presents a comprehensive study and design methodology of co-integrated oscillators for nano mass sensing application based on resonant Nano-Electro-Mechanical-System (NEMS). In particular, it reports the capacitive with the piezoresistive transduction schemes in terms of the overall sensor performance. The developed model is clearly in(More)
The use of a three dimensional Discrete Element Method (DEM) is proposed to study concrete submitted to rock-fall impacts. The model has already been validated through quasi-static, as well as dynamic simulations (SHPB tests). The simulation of four-point beam bending tests has validated the introduction of the reinforcement in the model. With this approach(More)
  • 1