Learn More
This article proposes a unified framework for understanding creative problem solving, namely, the explicit-implicit interaction theory. This new theory of creative problem solving constitutes an attempt at providing a more unified explanation of relevant phenomena (in part by reinterpreting/integrating various fragmentary existing theories of incubation and(More)
Many models offer different explanations of learning processes, some of them predicting equal learning rates between conditions. The simplest method by which to assess this equality is to evaluate the curvature parameter for each condition, followed by a statistical test. However, this approach is highly dependent on the fitting procedure, which may come(More)
Three experiments studied the effects of category structure on the development of categorization automaticity. In Experiment 1, participants were each trained for over 10,000 trials in a simple categorization task with one of three category structures. Results showed that after the first few sessions, there were no significant behavioral differences between(More)
Chartier and his colleagues have recently proposed a nonlinear synchronous attractor neural network. In the Nonlinear Dynamic Recurrent Associative Memory (NDRAM), learning has been shown to converge to a set of real-valued attractors in single-layered neural networks and bidirectional associative memories. However, the transmission is highly nonlinear and(More)
We had human subjects perform a one-out-of-six class action recognition task from video stimuli while undergoing functional magnetic resonance imaging (fMRI). Support-vector machines (SVMs) were trained on the recovered brain scans to classify actions observed during imaging, yielding average classification accuracy of 69.73% when tested on scans from the(More)
This article focuses on the interaction between the basal ganglia (BG) and prefrontal cortex (PFC). The BG are a group of nuclei at the base of the forebrain that are highly connected with cortex. A century of research suggests that the role of the BG is not exclusively motor, and that the BG also play an important role in learning and memory. In this(More)
Parkinson's disease (PD) is caused by the accelerated death of dopamine (DA) producing neurons. Numerous studies documenting cognitive deficits of PD patients have revealed impairments in a variety of tasks related to memory, learning, visuospatial skills, and attention. While there have been several studies documenting cognitive deficits of PD patients,(More)