Sébastien Bontemps

Learn More
We report herein the use of the (dihydrido)iron catalyst, Fe(H)2(dmpe)2, for the selective reduction of CO2 into either bis(boryl)acetal or methoxyborane depending on the hydroborane used as a reductant. In a one-pot two-step procedure, the in situ generated bis(boryl)acetal was shown to be a reactive and versatile source of methylene to create new C-N but(More)
A palladium-catalyzed multicomponent synthesis of imidazolinium carboxylates and imidazolines is described. The palladium catalyst [Pd(CH(R(1))N(R(2))COR(3))Cl](2), or [Pd(allyl)Cl](2), with P(t-Bu)(2)(2-biphenyl) can mediate the simultaneous coupling of two imines, acid chloride, and carbon monoxide into substituted imidazolinium carboxylates within hours(More)
Well-defined iron bis(diphosphine) complexes are active catalysts for the dehydrogenative C-H borylation of aromatic and heteroaromatic derivatives with pinacolborane. The corresponding borylated compounds were isolated in moderate to good yields (25-73%) with a 5 mol% catalyst loading under UV irradiation (350 nm) at room temperature. Stoichiometric(More)
Coordination of an ambiphilic diphosphine-borane (DPB) ligand to the RhCl(CO) fragment affords two isomeric complexes. According to X-ray diffraction analysis, each complex adopts a square-pyramidal geometry with trans coordination of the two phosphine buttresses and axial RhB contacts, but the two differ in the relative orientations around the rhodium and(More)
The ambiphilic triphosphine-borane ligand 1 {TPB = [o-iPr2P-(C6H4)3B} readily coordinates to all group 10 and 11 metals to afford a complete series of metal boratranes (TPB)[M] 2-8 (2: M = Ni, 3: M = Pd, 4: M = Pt, 5: M = CuCl, 6: M = AgCl, 7: M = AuCl, 8: M = Au+). Spectroscopic and structural characterization unambiguously establishes the presence of M-B(More)
A family of four-coordinate Fe(II) complexes formed with N,N'-chelating amido-pyridine ligands was synthesized, and their magnetic properties were investigated. These distorted tetrahedral complexes exhibit significant magnetic anisotropy with zero-field splitting parameter D ranging between -17 and -12 cm(-1). Ab initio calculations enabled identification(More)