Sébastien A. Gittens

Learn More
BACKGROUND Tissue-engineering techniques combined with gene therapy have been recently reported to improve osteogenesis. In this study, tissue-engineered bone constructed by human Bone Morphogenetic Protein 4 (hBMP-4) gene-modified bone marrow stromal cells (bMSCs) was explored in an ectopic bone formation model in rabbits. METHODS A pEGFP-hBMP-4(More)
Bone is a dynamic tissue that undergoes significant turnover during the life cycle of an individual. Despite having a significant regenerative capability, trauma and other pathological scenarios commonly require therapeutic intervention to facilitate the healing process. Bone tissue engineering, where cellular and biological processes at a site are(More)
Growth factors (GFs) are endogenous proteins capable of acting on cell-surface receptors and directing cellular activities involved in the regeneration of new bone tissue. The specific actions and long-term effects of GFs on bone-forming cells have resulted in exploration of their potential for clinical bone repair. The concerted efforts have led to the(More)
OBJECTIVES To evaluate the effects of maxillary sinus floor elevation by a tissue-engineered bone complex with OsteoBone(trade mark) and bone marrow stromal cells (bMSCs) in rabbits. MATERIAL AND METHODS Autologous bMSCs from adult New Zealand rabbits were cultured and combined with OsteoBone(trade mark) at a concentration of 20 x 10(6) cells/ml in vitro.(More)
Chemical conjugation of bisphosphonates (BPs) to therapeutic proteins is an effective means to impart mineral affinity to proteins. Such conjugates can be implanted with mineral-based matrices to control the local delivery kinetics of the proteins. BPs linked to proteins with reversible (i.e., cleavable) linkages are desirable over conjugates with stable(More)
Protein-based therapeutic agents intended for bone diseases should ideally exhibit a high affinity to bone tissue, so that their systemic administration will result in specific delivery to bone with minimal distribution to extra-skeletal sites. This was shown possible in the authors' lab by modifying a desired protein with bisphosphonates (BPs) that exhibit(More)
Protein conjugation to bisphosphonic acids (BPs), such as 1-amino-1,1-diphosphonate methane (aminoBP) and 3,5-di(ethylamino-2,2-bisphosphono)benzoic acid (diBP), was proposed as a foundation for bone-specific delivery of protein therapeutics. This study was performed to directly compare the mineral affinity of protein-BP conjugates prepared by three(More)
Purpose. To develop a novel means of conjugating bisphosphonates onto the carbohydrate moieties of glycoproteins to enhance protein affinity to bone. Methods. 1-Amino-1,1-diphosphonate methane (aminoBP) was conjugated onto the carbohydrate moietites of oxidized fetuin by using 4-(maleimidomethyl)cyclohexane-1-carboxyl-hydrazide (MMCCH). Bone affinity of the(More)
In this study, the capacity of hBMP-4 gene therapy combined with tissue-engineering techniques to improve the repair of mandibular osseous defects in rabbits was explored. A mammalian plasmid vector expressing enhanced green fluorescent protein-human bone morphogenetic protein-4 (pEGFP-hBMP-4) was initially constructed through subcloning techniques.(More)