Learn More
DBpedia is a community effort to extract structured information from Wikipedia and to make this information available on the Web. DBpedia allows you to ask sophisticated queries against datasets derived from Wikipedia and to link other datasets on the Web to Wikipedia data. We describe the extraction of the DBpedia datasets, and how the resulting(More)
The DBpedia project is a community effort to extract structured information from Wikipedia and to make this information accessible on the Web. The resulting DBpedia knowledge base currently describes over 2.6 million entities. For each of these entities, DBpedia defines a globally unique identifier that can be dereferenced over the Web into a rich RDF(More)
The DBpedia community project extracts structured, multilingual knowledge from Wikipedia and makes it freely available using Semantic Web and Linked Data standards. The extracted knowledge, comprising more than 1.8 billion facts, is structured according to an ontology maintained by the community. The knowledge is obtained from different Wikipedia language(More)
Triple stores are the backbone of increasingly many Data Web applications. It is thus evident that the performance of those stores is mission critical for individual projects as well as for data integration on the Data Web in general. Consequently, it is of central importance during the implementation of any of these applications to have a clear picture of(More)
We present OntoWiki, a tool providing support for agile, distributed knowledge engineering scenarios. OntoWiki facilitates the visual presentation of a knowledge base as an information map, with different views on instance data. It enables intuitive authoring of semantic content, with an inline editing mode for editing RDF content, similar to WYSIWYG for(More)
Wikis are established means for the collaborative authoring, versioning and publishing of textual articles. The Wikipedia project, for example, succeeded in creating the by far largest encyclopedia just on the basis of a wiki. Recently, several approaches have been proposed on how to extend wikis to allow the creation of structured and semantically enriched(More)
In order to employ the Web as a medium for data and information integration, comprehensive datasets and vocabularies are required as they enable the disambiguation and alignment of other data and information. Many real-life information integration and aggregation tasks are impossible without comprehensive background knowledge related to spatial features of(More)
The Linked Data paradigm has evolved into a powerful enabler for the transition from the documentoriented Web into the Semantic Web. While the amount of data published as Linked Data grows steadily and has surpassed 25 billion triples, less than 5% of these triples are links between knowledge bases. Link discovery frameworks provide the functionality(More)
In this paper we present Triplify - a simplistic but effective approach to publish Linked Data from relational databases. Triplify is based on mapping HTTP-URI requests onto relational database queries. Triplify transforms the resulting relations into RDF statements and publishes the data on the Web in various RDF serializations, in particular as Linked(More)
The Semantic Web eases data and information integration tasks by providing an infrastructure based on RDF and ontologies. In this paper, we contribute to the development of a spatial Data Web by elaborating on how the collaboratively collected OpenStreetMap data can be interactively transformed and represented adhering to the RDF data model. This(More)