Learn More
Protein-protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid(More)
Protein-protein interactions play pivotal roles in various aspects of the structural and functional organization of the cell, and their complete description is indispensable to thorough understanding of the cell. As an approach toward this goal, here we report a comprehensive system to examine two-hybrid interactions in all of the possible combinations(More)
In response to herbivore damage, several plant species emit volatiles that attract natural predators of the attacking herbivores. Using spider mites (Tetranychus urticae) and predatory mites (Phytoseiulus persimilis), it has been shown that not only the attacked plant but also neighbouring plants are affected, becoming more attractive to predatory mites and(More)
Many biochemical, physiological and behavioural processes in organisms ranging from microorganisms to vertebrates exhibit circadian rhythms. In Drosophila, the gene period (per) is required for the circadian rhythms of locomotor activity and eclosion behaviour. Oscillation in the levels of per mRNA and Period (dPer) protein in the fly brain is thought to be(More)
We compared volatiles from lima bean leaves (Phaseolus lunatus) infested by either beet armyworm (Spodoptera exigua), common armyworm [Mythimna (Pseudaletia) separata], or two-spotted spider mite (Tetranychus urticae). We also analyzed volatiles from the leaves treated with jasmonic acid (JA) and/or methyl salicylate (MeSA). The volatiles induced by aqueous(More)
Plant-plant interactions via herbivory-induced leaf volatiles could result in the induction of defense responses against aggressive biotic agents in plants. In this study, cDNA microarray technology showed comprehensive gene activation in lima bean leaves that were exposed to volatiles released from the neighboring leaves infested with spider mites. The(More)
We report the synergistic effects of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) and jasmonic acid (JA) on production of induced volatiles by excised lima bean leaves. Application of ACC alone to leaves induced trace amounts of volatiles. ACC positively affected three JA-induced volatiles, (E)- and (Z)-beta-ocimene, and (Z)-3-hexenyl acetate. The(More)
A robot designed to mimic a human becomes kinematically redundant, i.e. its total degrees of freedom becomes larger than the number of physical variables required for description of a given task. Kinematic redundancy may contribute to enhancement of dexterity and versatility, but incurs a problem of ill-posedness of inverse kinematics from the(More)