Learn More
Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at(More)
Hippocampal granule cells (GCs) are continuously generated in the subgranular zone of the dentate gyrus (DG) and functionally incorporated to dentate neural circuits even in adulthood. This raises a question about the fate of neonatally born GCs in adult DG. Do they exist until adulthood or are they largely superseded by adult-born GCs? To investigate this(More)
Neuroligin (NLG), a postsynaptic adhesion molecule, is involved in the formation of synapses by binding to a cognate presynaptic ligand, neurexin. Here we report that neuroligin-1 (NLG1) undergoes ectodomain shedding at the juxtamembrane stalk region to generate a secreted form of NLG1 and a membrane-tethered C-terminal fragment (CTF) in adult rat brains in(More)
Hippocampal mossy fibers, axons of dentate granule cells, converge in the dentate hilus and run through a narrow area called the stratum lucidum to synapse with hilar and CA3 neurons. In the hippocampal formation of temporal lobe epilepsy patients, however, this stereotyped pattern of projection is often collapsed; the mossy fibers branch out of the dentate(More)
Aberrant sprouting and synaptic reorganization of the mossy fiber (MF) axons are commonly found in the hippocampus of temporal lobe epilepsy patients and result in the formation of excitatory feedback loops in the dentate gyrus, a putative cellular basis for recurrent epileptic seizures. Using ex vivo hippocampal cultures, we show that prolonged(More)
Low-cost, simple procedures for organotypic tissue cultures are desirable for high-throughput biological experiments such as large-scale medical/drug screening. We present a practical and economical method to cultivate brain slices using hydrophilic filtration membranes. With a cost reduction of more than 90%, this technique allows us to prepare hippocampal(More)
Temporal lobe epilepsy (TLE) is accompanied by an abnormal location of granule cells in the dentate gyrus. Using a rat model of complex febrile seizures, which are thought to be a precipitating insult of TLE later in life, we report that aberrant migration of neonatal-generated granule cells results in granule cell ectopia that persists into adulthood.(More)
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has drawn much attention as a potential therapeutic target for temporal lobe epilepsy (TLE). TLE seizures are produced by synchronized hyperactivity of neuron populations due to the disruption of a balance between excitatory and inhibitory synaptic transmissions. In(More)
Early in postnatal development, glutamatergic synapses contain primarily NMDA receptors and progressively acquire AMPA receptor function. To determine whether this transformation occurs in a process of regenerative synaptogenesis following axotomy, we investigated the recovery of AMPA and NMDA receptor-mediated neurotransmission after the transection of(More)
Prenatal stress (PS) increases the risk of depressive disorders in adult offspring. The pathophysiology of depressive disorders has been linked to hippocampal dysfunction; however, whether and how PS attenuates the development and function of hippocampal networks remains unknown. Using a rat model of PS, in which pregnant mothers receive daily restraint(More)