Ryuji Sakamaki

Learn More
We have developed CUDA-enabled version of a general purpose molecular dynamics simulation code for GPU. Implementation details including parallelization scheme and performance optimization are described. Here we have focused on the non-bonded force calculation because it is most time consuming part in molecular dynamics simulation. Timing results using(More)
The surface tension, vapor-liquid equilibrium densities, and equilibrium pressure for common water models were calculated using molecular dynamics simulations over temperatures ranging from the melting to the critical points. The TIP4P/2005 and TIP4P-i models produced better values for the surface tension than the other water models. We also examined the(More)
Molecular Dynamics (MD) simulation requires huge computational power, as each atom interacts with the others by long range forces such as the Coulomb or van der Waals forces. Recently, a video game computer, such as SONY PLAYSTATION 3 (PS3) or NVIDIApsilas Graphics Processing Unit (GPU) has become a candidate hardware for accelerating MD simulations as well(More)
Molecular dynamics simulations have been performed to examine the thermodynamic properties of methane/water interface using two different water models, the TIP4P/2005 and SPC/E, and two sets of combining rules. The density profiles, interfacial tensions, surface excesses, surface pressures, and coexisting densities are calculated over a wide range of(More)
  • 1