Ryuji Morizane

Learn More
Kidney cells and tissues derived from human pluripotent stem cells (hPSCs) may enable organ regeneration, disease modeling and drug screening. We report an efficient, chemically defined protocol for differentiating hPSCs into multipotent nephron progenitor cells (NPCs) that can form nephron-like structures. By recapitulating metanephric kidney development(More)
Human-pluripotent-stem-cell-derived kidney cells (hPSC-KCs) have important potential for disease modelling and regeneration. Whether the hPSC-KCs can reconstitute tissue-specific phenotypes is currently unknown. Here we show that hPSC-KCs self-organize into kidney organoids that functionally recapitulate tissue-specific epithelial physiology, including(More)
Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many(More)
micro RNAs (miRNAs) are small non-coding RNAs that act as posttranscriptional repressors by binding to the 3'-UTR of target mRNAs. On the other hand, mesenchymal-epithelial transition (EMT) and kidney fibrosis is a pathological process of chronic kidney disease (CKD), and its relationship to miRNAs is becoming recognized as a potential target for CKD(More)
The proximal straight tubule (S3 segment) of the kidney is highly susceptible to ischemia and toxic insults but has a remarkable capacity to repair its structure and function. In response to such injuries, complex processes take place to regenerate the epithelial cells of the S3 segment; however, the precise molecular mechanisms of this regeneration are(More)
Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), represent an ideal substrate for regenerating kidney cells and tissue lost through injury and disease. Recent studies have demonstrated the ability to differentiate PSCs into populations of nephron progenitor cells that can organize into kidney(More)
BACKGROUND Antineutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis (CGN) is a major cause of rapidly progressive glomerulonephritis (RPGN). ANCA-associated CGN is generally classified into pauci-immune RPGN, in which there are few or no immune complexes. CASE PRESENTATION A 78-year-old man presented with RPGN after a 7-year(More)
Global or local ischemia contributes to the pathogenesis of acute kidney injury (AKI). Currently there are no specific therapies to prevent AKI. Potentiation of glycolytic metabolism and attenuation of mitochondrial respiration may decrease cell injury and reduce reactive oxygen species generation from the mitochondria. Meclizine, an over-the-counter(More)
Kidney cells and tissues derived from human pluripotent stem cells (hPSCs) would enable organ regeneration, disease modeling, and drug screening in vitro. We established an efficient, chemically defined protocol for differentiating hPSCs into multipotent nephron progenitor cells (NPCs) that can form nephron-like structures. By recapitulating metanephric(More)
Recent advances in stem cell research have resulted in methods to generate kidney organoids from human pluripotent stem cells (hPSCs), which contain cells of multiple lineages including nephron epithelial cells. Methods to purify specific types of cells from differentiated hPSCs, however, have not been established well. For bioengineering, cell(More)
  • 1