Learn More
Extracellular redox-active compounds, flavins and other quinones, have been hypothesized to play a major role in the delivery of electrons from cellular metabolic systems to extracellular insoluble substrates by a diffusion-based shuttling two-electron-transfer mechanism. Here we show that flavin molecules secreted by Shewanella oneidensis MR-1 enhance the(More)
We report the site-specific synthesis of mixed valence TiIV-O-FeII complexes within the pores of ordered mesoporous silica (SBA-15). By using 6-di- tert-butylpyridine as the selective activator of tripodally linked TiIV-OH groups of Ti-grafted SBA-15, the FeCl2.4H2O complexes reacted selectively with the nucleophilic TiIV-O(-) groups. The formation of(More)
Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved(More)
Manganese oxides function as efficient electrocatalysts for water oxidation to molecular oxygen in strongly alkaline conditions, but are inefficient at neutral pH. To provide new insight into the mechanism underlying the pH-dependent activity of the electrooxidation reaction, we performed UV-vis spectroelectrochemical detection of the intermediate species(More)
Pure-culture studies have shown that dissimilatory metal-reducing bacteria are able to utilize iron-oxide nanoparticles as electron conduits for reducing distant terminal acceptors; however, the ecological relevance of such energy metabolism is poorly understood. Here, soil microbial communities were grown in electrochemical cells with acetate as the(More)
The variety of solid surfaces to and from which microbes can deliver electrons by extracellular electron transport (EET) processes via outer-membrane c-type cytochromes (OM c-Cyts) expands the importance of microbial respiration in natural environments and industrial applications. Here, we demonstrate that the bifurcated EET pathway of OM c-Cyts sustains(More)
We investigated the role of c-type cytochromes (c-Cyts) in electron conduction across biofilms of Shewanella oneidensis MR-1 and the relevance of the electron conductivity for biological current generation. Following the formation of monolayer and multilayer biofilms on indium-tin oxide electrodes, we quantified the c-Cyts that were electrically wired with(More)
Shewanella is an electrogenic microbe that has significant content of c type cytochromes (ca. 0.5 mM). This feature allows the optical absorption spectra of the cell-membrane-associated proteins to be monitored in vivo in the course of extracellular respiratory electron-transfer reactions. The results show significant differences to those obtained in vitro(More)
The development of Mn-oxide electrocatalysts for the oxidation of H(2)O to O(2) has been the subject of intensive researches not only for their importance as components of artificial photosynthetic systems, but also as O(2)-evolving centers in photosystem II. However, limited knowledge of the mechanisms underlying this oxidation reaction hampers the ability(More)
Visible light-induced water oxidation has been demonstrated at an Ir oxide nanocluster coupled to a single CrVI site on the pore surface of MCM-41 mesoporous silica. The photocatalytic unit was assembled by the reaction of surface Cr=O groups with Ir(acac)3 precursor followed by calcination at 300 degrees C and bond formation monitored by FT-Raman and FT-IR(More)