Learn More
Compared with algal and cyanobacterial cytochrome c(6), cytochrome c(6A) from higher plants contains an additional loop of 12 amino acid residues. We have determined the first crystal structure of cytochrome c(6A) from Arabidopsis thaliana at 1.5 Angstrom resolution in order to help elucidate its function. The overall structure of cytochrome c(6A) follows(More)
Blasticidin A, an antibiotic, showed strong inhibitory activity toward aflatoxin production by Aspergillus parasiticus. Its structure was characterized by NMR and chemical degradation experiments as 1, which is a tetramic acid derivative with a highly oxygenated long alkyl chain similar to aflastatin A (2). Absolute configurations of the eight chiral(More)
To investigate the role of the heme axial ligand in the conformational stability of c-type cytochrome, we constructed M58C and M58H mutants of the red alga Porphyra yezoensis cytochrome c(6) in which the sixth heme iron ligand (Met58) was replaced with Cys and His residues, respectively. The Gibbs free energy change for unfolding of the M58H mutant in water(More)
Allosamidin, a typical secondary metabolite of Streptomyces, has been known as a chitinase inhibitor. We found that allosamidin can dramatically promote chitinase production and growth of its producer, Streptomyces sp. AJ9463, in a chitin medium at a few hundred nM. Allosamidin promoted production of the main chitinase detected in the culture filtrate and(More)
Commercial cytochrome c (Cyt c) was irradiated with Co-60 gamma-rays in the dose range of up to 3.0 kGy to investigate the enhancement of the nitrite reducing activity of Cyt c. The optimum irradiation dose to induce nitrite reducing activity for 30 muM Cyt c solution was 1.0 kGy under an O(2) atmosphere. The nitrite reducing activity of Cyt c irradiated at(More)
In Streptomyces sp. AJ9463, a producer of chitinase inhibitor allosamidin, allosamidin strongly enhances production of the chitinase mainly secreted to the culture broth in a chitin medium. To clarify the mechanism for regulation of the chitinase production by allosamidin, a disruption experiment of genes encoding proteins constructing a two-component(More)
Allosamidin, a typical secondary metabolite of Streptomyces, has been known as a chitinase inhibitor. We found that allosamidin can dramatically promote chitinase production and growth of its producer, Streptomyces sp. AJ9463, in a chitin medium at a few hundred nM. Allosamidin promoted production of the main chitinase detected in the culture filtrate and(More)
A transformation system for Streptomyces sp. AJ9463 strain (allosamidin producer) was successfully developed using protoplasts and a PEG-mediated method. To prepare protoplasts, the concentration of glycine and sucrose in YEME medium were optimized to 0.5% (w/v) and 34.0% (w/v), respectively. When the protoplasts of Streptomyces sp. AJ9463 were transformed(More)
To investigate the nitrite reducing activity of microperoxidases (mps) in the presence of methyl viologen and dithionite, the fragments C14-K22 (mp9), V11-L32 (mp22), and G1-M65 (mp65) containing heme were prepared by enzymatic hydrolysis of commercially equine heart cytochrome c (Cyt c), in which His is axially coordinated to heme iron, and acts as its(More)
Enzymatic transglycosylation using four possible monodeoxy analogs of p-nitrophenyl alpha-D-glucopyranoside (Glc alpha-O-pNP), modified at the C-2, C-3, C-4, and C-6 positions (2D-, 3D-, 4D-, and 6D-Glc alpha-O-pNP, respectively), as glycosyl donors and six equivalents of ethyl beta-D-thioglucopyranoside (Glc beta-S-Et) as a glycosyl acceptor, to yield the(More)