Ryosuke Oketani

Learn More
We show that scattering from a single gold nanoparticle is saturable for the first time. Wavelength-dependent study reveals that the saturation behavior is governed by depletion of surface plasmon resonance, not the thermal effect. We observed interesting flattening of the point spread function of scattering from a single nanoparticle due to saturation. By(More)
Nonlinear plasmonics has attracted a lot of interests due to its wide applications. Recently, we demonstrated saturation and reverse saturation of scattering from a single plasmonic nanoparticle, which exhibits extremely narrow side lobes and central peaks in scattering images [ACS Photonics 1(1), 32 (2014)]. It is desirable to extract the reversed(More)
Plasmonics, which are based on the collective oscillation of electrons due to light excitation, involve strongly enhanced local electric fields and thus have potential applications in nonlinear optics, which requires extraordinary optical intensity. One of the most studied nonlinearities in plasmonics is nonlinear absorption, including saturation and(More)
Because of their exceptional local-field enhancement and ultrasmall mode volume, plasmonic components can integrate photonics and electronics at nanoscale, and active control of plasmons is the key. However, all-optical modulation of plasmonic response with nanometer mode volume and unity modulation depth is still lacking. Here we show that scattering from(More)
We demonstrated resolution improvement in two-photon excitation microscopy by combining saturated excitation (SAX) of fluorescence and pupil manipulation. We theoretically estimated the resolution improvement and the sidelobe effect in the point spread function with various pupil designs and found that the combination of SAX and core-ring illumination can(More)
  • 1