Ryoki Fukushima

Learn More
We consider the random Schrödinger operator −ε −2 ∆ (d) + ξ (ε) (x), with ∆ (d) the discrete Laplacian on Z d and ξ (ε) (x) are bounded and independent random variables, on sets of the form D ε := {x ∈ Z d : xε ∈ D} for D bounded, open and with a smooth boundary, and study the statistics of the Dirichlet eigenvalues in the limit ε ↓ 0. Assuming Eξ (ε) (x) =(More)
  • 1