Ryohei Fujimaki

Learn More
This paper addresses the issue of unsupervised network anomaly detection. In recent years, networks have played more and more critical roles. Since their outages cause serious economic losses, it is quite significant to monitor their changes over time and to detect anomalies as early as possible. In this paper, we specifically focus on the management of the(More)
Development of advanced anomaly detection and failure diagnosis technologies for spacecraft is a quite significant issue in the space industry, because the space environment is harsh, distant and uncertain. While several modern approaches based on qualitative reasoning, expert systems, and probabilistic reasoning have been developed recently for this(More)
We consider forward-backward greedy algorithms for solving sparse feature selection problems with general convex smooth functions. A state-of-the-art greedy method, the ForwardBackward greedy algorithm (FoBa-obj) requires to solve a large number of optimization problems, thus it is not scalable for large-size problems. The FoBa-gdt algorithm, which uses the(More)
This paper proposes a novel Bayesian approximation inference method for mixture modeling. Our key idea is to factorize marginal log-likelihood using a variational distribution over latent variables. An asymptotic approximation, a factorized information criterion (FIC), is obtained by applying the Laplace method to each of the factorized components. In order(More)
Group LASSO is widely used to enforce the structural sparsity, which achieves the sparsity at the inter-group level. In this paper, we propose a new formulation called “exclusive group LASSO”, which brings out sparsity at intra-group level in the context of feature selection. The proposed exclusive group LASSO is applicable on any feature structures,(More)
This paper proposes an online mixture modeling methodology in which individual components can have different marginal distributions and dependency structures. Mixture models have been widely studied and applied to various application areas, including density estimation, fraud/failure detection, image segmentation, etc. Previous research has been almost(More)
Factorized information criterion (FIC) is a recently developed approximation technique for the marginal log-likelihood, which provides an automatic model selection framework for a few latent variable models (LVMs) with tractable inference algorithms. This paper reconsiders FIC and fills theoretical gaps of previous FIC studies. First, we reveal the core(More)
With a growing need to understand large-scale networks, factorial relational models, such as binary matrix factorization models (BMFs), have become important in many applications. Although BMFs have a natural capability to uncover overlapping group structures behind network data, existing inference techniques have issues of either high computational cost or(More)
This paper proposes a novel anomaly detection system for spacecrafts based on data mining techniques. It constructs a nonlinear probabilistic model w.r.t. behavior of a spacecraft by applying the relevance vector regression and autoregression to massive telemetry data, and then monitors the on-line telemetry data using the model and detects anomalies. A(More)