Learn More
This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the(More)
A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and(More)
A method for gait analysis using wearable acceleration sensors and gyro sensors is proposed in this work. The volunteers wore sensor units that included a tri-axis acceleration sensor and three single axis gyro sensors. The angular velocity data measured by the gyro sensors were used to estimate the translational acceleration in the gait analysis. The(More)
The objective of this work was to investigate the possibilities of using the wearable sensors-based H-Gait system in an actual clinical trial and proposes new gait parameters for characterizing OA gait. Seven H-Gait sensors, consisting of tri-axial inertial sensors, were attached to seven lower limb body segments (pelvis, both thighs, both shanks and both(More)
Accumulated signal noise will cause the integrated values to drift from the true value when measuring orientation angles of wearable sensors. This work proposes a novel method to reduce the effect of this drift to accurately measure human gait using wearable sensors. Firstly, an infinite impulse response (IIR) digital 4th order Butterworth filter was(More)
PURPOSE The purpose was to clarify the load-bearing functions of the fibers of the femoral anterior cruciate ligament (ACL) attachment in resisting tibial anterior drawer and rotation. METHODS A sequential cutting study was performed on 8 fresh-frozen human knees. The femoral attachment of the ACL was divided into a central area that had dense fibers(More)
Human body Center of Mass (CoM) and Center of Pressure (CoP) kinematics are related to stability and balance control. However their evaluation can only be performed in motion analysis lab using different techniques. One of the more accurate is based on the segmental method, in which the body is modelled as a set of rigid bodies, each of which has different(More)
Magneto-Inertial Measurement Units (MIMUs) are gathering an increasing consensus in human motion analysis. However, applications such as clinical gait analysis require reliable, repeatable and accurate measurements of gait parameters up to a level that it is not easily achievable with MIMUs. We pointed out some specific technical challenges that we(More)
  • 1