Learn More
Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular(More)
Massively parallel sequencing greatly facilitates the discovery of novel disease genes causing Mendelian and oligogenic disorders. However, many mutations are present in any individual genome, and identifying which ones are disease causing remains a largely open problem. We introduce eXtasy, an approach to prioritize nonsynonymous single-nucleotide variants(More)
Whole cells expressing the non-heme diiron hydroxylases AlkB and toluene 4-monooxygenase (T4MO) were used to probe enzyme reaction mechanisms. AlkB catalyzes the hydroxylation of the radical clock substrates bicyclo[4.1.0]heptane (norcarane), spirooctane and 1,1-diethylcyclopropane, and does not catalyze the hydroxylation of the radical clocks(More)
Recent genome sequencing efforts have identified millions of somatic mutations in cancer. However, the functional impact of most variants is poorly understood. Here we characterize 194 somatic mutations identified in primary lung adenocarcinomas. We present an expression-based variant-impact phenotyping (eVIP) method that uses gene expression changes to(More)
The emergence of new genes throughout evolution requires rewiring and extension of regulatory networks. However, the molecular details of how the transcriptional regulation of new gene copies evolves remain largely unexplored. Here we show how duplication of a transcription factor gene allowed the emergence of two independent regulatory circuits.(More)
The increasing size and complexity of exome/genome sequencing data requires new tools for clinical geneticists to discover disease-causing variants. Bottlenecks in identifying the causative variation include poor cross-sample querying, constantly changing functional annotation and not considering existing knowledge concerning the phenotype. We describe a(More)
Can ubiquitous technologies intended to change people's behavior benefit from personalization? This paper addresses the development of an adaptive persuasive system intended to increase stair climbing at work: APStairs. Based on their persuasion profile, individuals are distinguished by their susceptibility to different social influence strategies. This(More)
Dendrograms are graphical representations of binary tree structures resulting from agglomerative hierarchical clustering. In Life Science, a cluster heat map is a widely accepted visualization technique that utilizes the leaf order of a dendrogram to reorder the rows and columns of the data table. The derived linear order is more meaningful than a random(More)
In 2011, the IEEE VisWeek conferences inaugurated a symposium on Biological Data Visualization. Like other domain-oriented Vis symposia, this symposium's purpose was to explore the unique characteristics and requirements of visualization within the domain, and to enhance both the Visualization and Bio/Life-Sciences communities by pushing Biological data(More)
The introduction of next generation sequencing methods in genome studies has made it possible to shift research from a gene-centric approach to a genome wide view. Although methods and tools to detect single nucleotide polymorphisms are becoming more mature, methods to identify and visualize structural variation (SV) are still in their infancy. Most genome(More)